論文の概要: Robust Multimodal Large Language Models Against Modality Conflict
- arxiv url: http://arxiv.org/abs/2507.07151v1
- Date: Wed, 09 Jul 2025 11:18:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.15091
- Title: Robust Multimodal Large Language Models Against Modality Conflict
- Title(参考訳): モダリティ問題に対するロバストなマルチモーダル大言語モデル
- Authors: Zongmeng Zhang, Wengang Zhou, Jie Zhao, Houqiang Li,
- Abstract要約: マルチモーダル大言語モデル(MLLM)は、現実のシナリオにおいて幻覚を起こす傾向がある。
我々は、MLLMをジレンマに配置し、幻覚に直接導く異なるモダリティからの入力における固有の矛盾について研究する。
モダリティ衝突による幻覚を緩和する3つの方法が提案されている。
- 参考スコア(独自算出の注目度): 94.12341487880465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the impressive capabilities of multimodal large language models (MLLMs) in vision-language tasks, they are prone to hallucinations in real-world scenarios. This paper investigates the hallucination phenomenon in MLLMs from the perspective of modality conflict. Unlike existing works focusing on the conflicts between model responses and inputs, we study the inherent conflicts in inputs from different modalities that place MLLMs in a dilemma and directly lead to hallucinations. We formally define the modality conflict and construct a dataset named Multimodal Modality Conflict (MMMC) to simulate this phenomenon in vision-language tasks. Three methods based on prompt engineering, supervised fine-tuning, and reinforcement learning are proposed to alleviate the hallucination caused by modality conflict. Extensive experiments are conducted on the MMMC dataset to analyze the merits and demerits of these methods. Our results show that the reinforcement learning method achieves the best performance in mitigating the hallucination under modality conflict, while the supervised fine-tuning method shows promising and stable performance. Our work sheds light on the unnoticed modality conflict that leads to hallucinations and provides more insights into the robustness of MLLMs.
- Abstract(参考訳): 視覚言語タスクにおけるマルチモーダル大言語モデル(MLLM)の印象的な機能にもかかわらず、現実のシナリオでは幻覚を起こす傾向がある。
本稿では,MLLMにおける幻覚現象をモダリティコンフリクトの観点から検討する。
モデル応答と入力の衝突に焦点を当てた既存の研究とは違って、MLLMをジレンマに配置し、幻覚に直接導く異なるモダリティからの入力に固有の矛盾を研究する。
モーダルコンフリクトを正式に定義し,この現象を視覚言語タスクでシミュレートするために,Multimodal Modality Conflict (MMMC) というデータセットを構築した。
モータリティ衝突による幻覚を軽減するために, 迅速な工学, 教師付き微調整, 強化学習の3つの手法を提案する。
MMMCデータセットを用いて、これらの手法のメリットとデメリットを分析する。
以上の結果から, 教師付き微調整法は有望かつ安定な性能を示す一方で, モダリティ競合下での幻覚を緩和する上では, 強化学習法が最高の性能を達成できることが示唆された。
私たちの仕事は、幻覚につながる無名なモダリティの衝突に光を当て、MLLMの堅牢性に関する洞察を提供する。
関連論文リスト
- MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM [58.2298313720146]
マルチモーダル幻覚は多源性であり、様々な原因から生じる。
既存のベンチマークでは、知覚誘発幻覚と推論誘発幻覚を適切に区別することができない。
論文 参考訳(メタデータ) (2025-05-30T05:54:36Z) - MLLMs are Deeply Affected by Modality Bias [158.64371871084478]
MLLM(Multimodal Large Language Models)の最近の進歩は、テキストや画像などの多様なモダリティを統合する上で、有望な成果を示している。
MLLMはモダリティバイアスに強く影響され、しばしば言語に依存し、視覚入力のような他のモダリティを過小評価する。
本稿では,MLLMはモダリティバイアスの影響を強く受けており,様々なタスクにまたがってその発現を明らかにする。
論文 参考訳(メタデータ) (2025-05-24T11:49:31Z) - SegSub: Evaluating Robustness to Knowledge Conflicts and Hallucinations in Vision-Language Models [6.52323086990482]
視覚言語モデル(VLM)は、高度なマルチモーダル推論を実証するが、知識の衝突に直面した場合には幻覚を起こす傾向がある。
本研究は,VLMレジリエンスを知識衝突に対して調査するために,目標画像摂動を適用するフレームワークであるsegsubを紹介する。
論文 参考訳(メタデータ) (2025-02-19T00:26:38Z) - The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio [118.75449542080746]
本稿では,大規模マルチモーダルモデル(LMM)における幻覚に関する最初の系統的研究について述べる。
本研究は,幻覚に対する2つの重要な要因を明らかにした。
私たちの研究は、モダリティ統合の不均衡やトレーニングデータからのバイアスなど、重要な脆弱性を強調し、モダリティ間のバランスの取れた学習の必要性を強調した。
論文 参考訳(メタデータ) (2024-10-16T17:59:02Z) - Insight Over Sight: Exploring the Vision-Knowledge Conflicts in Multimodal LLMs [55.74117540987519]
本稿では,マルチモーダル大言語モデル(MLLM)におけるコモンセンスレベル・ビジョン・知識衝突の問題について考察する。
MLLMにおけるこれらの競合をシミュレートし、評価するために設計された入力を生成するために、人間のループ品質制御を付加した自動フレームワークを導入する。
このフレームワークを用いて、374のオリジナル画像と1,122の高品質な質問応答対からなる診断ベンチマークを構築した。
論文 参考訳(メタデータ) (2024-10-10T17:31:17Z) - ECon: On the Detection and Resolution of Evidence Conflicts [56.89209046429291]
大規模言語モデル(LLM)の台頭は意思決定システムにおける情報の質に大きな影響を与えている。
本研究では,実世界の誤情報シナリオをシミュレートするために,多様で検証された証拠衝突を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T07:41:17Z) - Unraveling Cross-Modality Knowledge Conflicts in Large Vision-Language Models [33.76903352835436]
LVLM(Large Vision-Language Models)は、マルチモーダル入力をキャプチャし、推論する能力を示す。
これらのモデルは、そのビジョンと言語コンポーネント間の表現された知識の不整合から生じるパラメトリックな知識の衝突を招きやすい。
我々は、それらを検出し、解釈し、緩和するための体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-04T17:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。