Counterfactual Explanations for Time Series Forecasting
- URL: http://arxiv.org/abs/2310.08137v1
- Date: Thu, 12 Oct 2023 08:51:59 GMT
- Title: Counterfactual Explanations for Time Series Forecasting
- Authors: Zhendong Wang, Ioanna Miliou, Isak Samsten, Panagiotis Papapetrou
- Abstract summary: We formulate the novel problem of counterfactual generation for time series forecasting, and propose an algorithm, called ForecastCF.
ForecastCF solves the problem by applying gradient-based perturbations to the original time series.
Our results show that ForecastCF outperforms the baseline in terms of counterfactual validity and data manifold closeness.
- Score: 14.03870816983583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Among recent developments in time series forecasting methods, deep
forecasting models have gained popularity as they can utilize hidden feature
patterns in time series to improve forecasting performance. Nevertheless, the
majority of current deep forecasting models are opaque, hence making it
challenging to interpret the results. While counterfactual explanations have
been extensively employed as a post-hoc approach for explaining classification
models, their application to forecasting models still remains underexplored. In
this paper, we formulate the novel problem of counterfactual generation for
time series forecasting, and propose an algorithm, called ForecastCF, that
solves the problem by applying gradient-based perturbations to the original
time series. ForecastCF guides the perturbations by applying constraints to the
forecasted values to obtain desired prediction outcomes. We experimentally
evaluate ForecastCF using four state-of-the-art deep model architectures and
compare to two baselines. Our results show that ForecastCF outperforms the
baseline in terms of counterfactual validity and data manifold closeness.
Overall, our findings suggest that ForecastCF can generate meaningful and
relevant counterfactual explanations for various forecasting tasks.
Related papers
- Forecasting with Deep Learning: Beyond Average of Average of Average Performance [0.393259574660092]
Current practices for evaluating and comparing forecasting models focus on summarising performance into a single score.
We propose a novel framework for evaluating models from multiple perspectives.
We show the advantages of this framework by comparing a state-of-the-art deep learning approach with classical forecasting techniques.
arXiv Detail & Related papers (2024-06-24T12:28:22Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Precipitation nowcasting with generative diffusion models [0.0]
We study the efficacy of diffusion models in handling the task of precipitation nowcasting.
Our work is conducted in comparison to the performance of well-established U-Net models.
arXiv Detail & Related papers (2023-08-13T09:51:16Z) - LoMEF: A Framework to Produce Local Explanations for Global Model Time
Series Forecasts [2.3096751699592137]
Global Forecasting Models (GFM) that are trained across a set of multiple time series have shown superior results in many forecasting competitions and real-world applications.
However, GFMs typically lack interpretability, especially towards particular time series.
We propose a novel local model-agnostic interpretability approach to explain the forecasts from GFMs.
arXiv Detail & Related papers (2021-11-13T00:17:52Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
We introduce a novel forecasting method called Meta Global-Local Auto-Regression (Meta-GLAR)
It adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts.
Our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
arXiv Detail & Related papers (2021-11-05T11:45:02Z) - Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series [11.004159006784977]
We propose a flexible nonlinear model that optimize quantile regression loss coupled with suitable regularization terms to maintain consistency of forecasts across hierarchies.
The theoretical framework introduced herein can be applied to any forecasting model with an underlying differentiable loss function.
arXiv Detail & Related papers (2021-02-25T00:59:01Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.