Natural Evolutionary Search meets Probabilistic Numerics
- URL: http://arxiv.org/abs/2507.07288v1
- Date: Wed, 09 Jul 2025 21:15:50 GMT
- Title: Natural Evolutionary Search meets Probabilistic Numerics
- Authors: Pierre Osselin, Masaki Adachi, Xiaowen Dong, Michael A. Osborne,
- Abstract summary: We introduce a novel class of algorithms, termed Probabilistic Natural Evolutionary Strategy Algorithms (ProbNES)<n>We show that ProbNES algorithms consistently outperforms their non-probabilistic counterparts as well as global sample efficient methods.
- Score: 24.753011922443513
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Zeroth-order local optimisation algorithms are essential for solving real-valued black-box optimisation problems. Among these, Natural Evolution Strategies (NES) represent a prominent class, particularly well-suited for scenarios where prior distributions are available. By optimising the objective function in the space of search distributions, NES algorithms naturally integrate prior knowledge during initialisation, making them effective in settings such as semi-supervised learning and user-prior belief frameworks. However, due to their reliance on random sampling and Monte Carlo estimates, NES algorithms can suffer from limited sample efficiency. In this paper, we introduce a novel class of algorithms, termed Probabilistic Natural Evolutionary Strategy Algorithms (ProbNES), which enhance the NES framework with Bayesian quadrature. We show that ProbNES algorithms consistently outperforms their non-probabilistic counterparts as well as global sample efficient methods such as Bayesian Optimisation (BO) or $\pi$BO across a wide range of tasks, including benchmark test functions, data-driven optimisation tasks, user-informed hyperparameter tuning tasks and locomotion tasks.
Related papers
- Constrained Hybrid Metaheuristic Algorithm for Probabilistic Neural Networks Learning [0.3686808512438362]
This study investigates the potential of hybrid metaheuristic algorithms to enhance the training of Probabilistic Neural Networks (PNNs)<n>Traditional learning methods, such as gradient-based approaches, often struggle to optimise high-dimensional and uncertain environments.<n>We propose the constrained Hybrid Metaheuristic (cHM) algorithm, which combines multiple population-based optimisation techniques into a unified framework.
arXiv Detail & Related papers (2025-01-26T19:49:16Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - LABCAT: Locally adaptive Bayesian optimization using principal-component-aligned trust regions [0.0]
We propose the LABCAT algorithm, which extends trust-region-based BO.
We show that the algorithm outperforms several state-of-the-art BO and other black-box optimization algorithms.
arXiv Detail & Related papers (2023-11-19T13:56:24Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Distributed Evolution Strategies for Black-box Stochastic Optimization [42.90600124972943]
This work concerns the evolutionary approaches to distributed black-box optimization.
Each worker can individually solve an approximation of the problem with algorithms.
We propose two alternative simulation schemes which significantly improve robustness of problems.
arXiv Detail & Related papers (2022-04-09T11:18:41Z) - Directed particle swarm optimization with Gaussian-process-based
function forecasting [15.733136147164032]
Particle swarm optimization (PSO) is an iterative search method that moves a set of candidate solution around a search-space towards the best known global and local solutions with randomized step lengths.
We show that our algorithm attains desirable properties for exploratory and exploitative behavior.
arXiv Detail & Related papers (2021-02-08T13:02:57Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - BOP-Elites, a Bayesian Optimisation algorithm for Quality-Diversity
search [0.0]
We propose the Bayesian optimisation of Elites (BOP-Elites) algorithm.
By considering user defined regions of the feature space as 'niches' our task is to find the optimal solution in each niche.
The resulting algorithm is very effective in identifying the parts of the search space that belong to a niche in feature space, and finding the optimal solution in each niche.
arXiv Detail & Related papers (2020-05-08T23:49:13Z) - Optimistic Exploration even with a Pessimistic Initialisation [57.41327865257504]
Optimistic initialisation is an effective strategy for efficient exploration in reinforcement learning (RL)
In particular, in scenarios with only positive rewards, Q-values are initialised at their lowest possible values.
We propose a simple count-based augmentation to pessimistically initialised Q-values that separates the source of optimism from the neural network.
arXiv Detail & Related papers (2020-02-26T17:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.