Constrained Hybrid Metaheuristic Algorithm for Probabilistic Neural Networks Learning
- URL: http://arxiv.org/abs/2501.15661v1
- Date: Sun, 26 Jan 2025 19:49:16 GMT
- Title: Constrained Hybrid Metaheuristic Algorithm for Probabilistic Neural Networks Learning
- Authors: Piotr A. Kowalski, Szymon Kucharczyk, Jacek MaĆdziuk,
- Abstract summary: This study investigates the potential of hybrid metaheuristic algorithms to enhance the training of Probabilistic Neural Networks (PNNs)
Traditional learning methods, such as gradient-based approaches, often struggle to optimise high-dimensional and uncertain environments.
We propose the constrained Hybrid Metaheuristic (cHM) algorithm, which combines multiple population-based optimisation techniques into a unified framework.
- Score: 0.3686808512438362
- License:
- Abstract: This study investigates the potential of hybrid metaheuristic algorithms to enhance the training of Probabilistic Neural Networks (PNNs) by leveraging the complementary strengths of multiple optimisation strategies. Traditional learning methods, such as gradient-based approaches, often struggle to optimise high-dimensional and uncertain environments, while single-method metaheuristics may fail to exploit the solution space fully. To address these challenges, we propose the constrained Hybrid Metaheuristic (cHM) algorithm, a novel approach that combines multiple population-based optimisation techniques into a unified framework. The proposed procedure operates in two phases: an initial probing phase evaluates multiple metaheuristics to identify the best-performing one based on the error rate, followed by a fitting phase where the selected metaheuristic refines the PNN to achieve optimal smoothing parameters. This iterative process ensures efficient exploration and convergence, enhancing the network's generalisation and classification accuracy. cHM integrates several popular metaheuristics, such as BAT, Simulated Annealing, Flower Pollination Algorithm, Bacterial Foraging Optimization, and Particle Swarm Optimisation as internal optimisers. To evaluate cHM performance, experiments were conducted on 16 datasets with varying characteristics, including binary and multiclass classification tasks, balanced and imbalanced class distributions, and diverse feature dimensions. The results demonstrate that cHM effectively combines the strengths of individual metaheuristics, leading to faster convergence and more robust learning. By optimising the smoothing parameters of PNNs, the proposed method enhances classification performance across diverse datasets, proving its application flexibility and efficiency.
Related papers
- Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
This paper focuses on both Single-Objective Multi-Modal Optimization (SOMMOP) and Multi-Objective Optimization (MOO)
In SOMMOP, we integrate chaotic evolution with niching techniques, as well as Persistence-Based Clustering combined with Gaussian mutation.
For MOO, we extend these methods into a comprehensive framework that incorporates Uncertainty-Based Selection, Adaptive Tuning, and introduces a radius ( R ) concept in deterministic crowding.
arXiv Detail & Related papers (2024-11-12T15:18:48Z) - Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Beyond Single-Model Views for Deep Learning: Optimization versus
Generalizability of Stochastic Optimization Algorithms [13.134564730161983]
This paper adopts a novel approach to deep learning optimization, focusing on gradient descent (SGD) and its variants.
We show that SGD and its variants demonstrate performance on par with flat-minimas like SAM, albeit with half the gradient evaluations.
Our study uncovers several key findings regarding the relationship between training loss and hold-out accuracy, as well as the comparable performance of SGD and noise-enabled variants.
arXiv Detail & Related papers (2024-03-01T14:55:22Z) - Ensemble-based Hybrid Optimization of Bayesian Neural Networks and
Traditional Machine Learning Algorithms [0.0]
This research introduces a novel methodology for optimizing Bayesian Neural Networks (BNNs) by synergistically integrating them with traditional machine learning algorithms such as Random Forests (RF), Gradient Boosting (GB), and Support Vector Machines (SVM)
Feature integration solidifies these results by emphasizing the second-order conditions for optimality, including stationarity and positive definiteness of the Hessian matrix.
Overall, the ensemble method stands out as a robust, algorithmically optimized approach.
arXiv Detail & Related papers (2023-10-09T06:59:17Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Distributed Evolution Strategies for Black-box Stochastic Optimization [42.90600124972943]
This work concerns the evolutionary approaches to distributed black-box optimization.
Each worker can individually solve an approximation of the problem with algorithms.
We propose two alternative simulation schemes which significantly improve robustness of problems.
arXiv Detail & Related papers (2022-04-09T11:18:41Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.