MagiC: Evaluating Multimodal Cognition Toward Grounded Visual Reasoning
- URL: http://arxiv.org/abs/2507.07297v1
- Date: Wed, 09 Jul 2025 21:44:12 GMT
- Title: MagiC: Evaluating Multimodal Cognition Toward Grounded Visual Reasoning
- Authors: Chengfei Wu, Ronald Seoh, Bingxuan Li, Liqiang Zhang, Fengrong Han, Dan Goldwasser,
- Abstract summary: We introduce MagiC, a comprehensive benchmark designed to evaluate grounded multimodal cognition.<n>We evaluate 15 vision-language models ranging from 7B to 70B parameters across four dimensions: final answer correctness, reasoning validity, grounding fidelity, and self-correction ability.
- Score: 15.17428354380373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large vision-language models have led to impressive performance in visual question answering and multimodal reasoning. However, it remains unclear whether these models genuinely perform grounded visual reasoning or rely on superficial patterns and dataset biases. In this work, we introduce MagiC, a comprehensive benchmark designed to evaluate grounded multimodal cognition, assessing not only answer accuracy but also the quality of step-by-step reasoning and its alignment with relevant visual evidence. Our benchmark includes approximately 5,500 weakly supervised QA examples generated from strong model outputs and 900 human-curated examples with fine-grained annotations, including answers, rationales, and bounding box groundings. We evaluate 15 vision-language models ranging from 7B to 70B parameters across four dimensions: final answer correctness, reasoning validity, grounding fidelity, and self-correction ability. MagiC further includes diagnostic settings to probe model robustness under adversarial visual cues and assess their capacity for introspective error correction. We introduce new metrics such as MagiScore and StepSense, and provide comprehensive analyses that reveal key limitations and opportunities in current approaches to grounded visual reasoning.
Related papers
- Reasoning Models Are More Easily Gaslighted Than You Think [85.84943447589511]
We evaluate three state-of-the-art reasoning models, including OpenAI's o4-mini, Claude-3.7-Sonnet and Gemini-2.5-Flash.<n>Our evaluation reveals significant accuracy drops following gaslighting negation prompts.<n>We introduce GaslightingBench-R, a new diagnostic benchmark designed to evaluate reasoning models' susceptibility to defend their belief.
arXiv Detail & Related papers (2025-06-11T12:52:25Z) - ChartMuseum: Testing Visual Reasoning Capabilities of Large Vision-Language Models [37.54872845368151]
We conduct a case study using a synthetic dataset solvable only through visual reasoning.<n>We then introduce ChartMuseum, a new Chart Question Answering (QA) benchmark containing 1,162 expert-annotated questions.<n>Although humans achieve 93% accuracy, the best-performing model Gemini-2.5-Pro attains only 63.0%, and the leading open-source LVLM Qwen2.5-VL-72B-Instruct achieves only 38.5%.
arXiv Detail & Related papers (2025-05-19T17:59:27Z) - VisuLogic: A Benchmark for Evaluating Visual Reasoning in Multi-modal Large Language Models [121.03333569013148]
We introduce VisuLogic: a benchmark of 1,000 human-verified problems across six categories.<n>These types of questions can be evaluated to assess the visual reasoning capabilities of MLLMs from multiple perspectives.<n>Most models score below 30% accuracy-only slightly above the 25% random baseline and far below the 51.4% achieved by humans.
arXiv Detail & Related papers (2025-04-21T17:59:53Z) - Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing [84.16442052968615]
We introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE)<n>RISEBench focuses on four key reasoning categories: Temporal, Causal, Spatial, and Logical Reasoning.<n>We conduct experiments evaluating nine prominent visual editing models, comprising both open-source and proprietary models.
arXiv Detail & Related papers (2025-04-03T17:59:56Z) - VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity [34.29409506366145]
VERIFY is a benchmark designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs.<n>Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes.<n>We propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns.
arXiv Detail & Related papers (2025-03-14T16:26:11Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Tell Me Why: Explainable Public Health Fact-Checking with Large Language Models [21.280725490520798]
This paper focuses on the ability of large language models to verify public health claims.
We examine the effectiveness of zero/few-shot prompting and parameter-efficient fine-tuning across various open and closed-source models.
arXiv Detail & Related papers (2024-05-15T15:49:06Z) - Q-Instruct: Improving Low-level Visual Abilities for Multi-modality
Foundation Models [81.20804369985376]
We conduct a large-scale subjective experiment collecting a vast number of real human feedbacks on low-level vision.
The constructed **Q-Pathway** dataset includes 58K detailed human feedbacks on 18,973 images.
We design a GPT-participated conversion to process these feedbacks into diverse-format 200K instruction-response pairs.
arXiv Detail & Related papers (2023-11-12T09:10:51Z) - HallusionBench: An Advanced Diagnostic Suite for Entangled Language Hallucination and Visual Illusion in Large Vision-Language Models [69.52245481329899]
We introduce HallusionBench, a benchmark for the evaluation of image-context reasoning.
The benchmark comprises 346 images paired with 1129 questions, all meticulously crafted by human experts.
In our evaluation on HallusionBench, we benchmarked 15 different models, highlighting a 31.42% question-pair accuracy achieved by the state-of-the-art GPT-4V.
arXiv Detail & Related papers (2023-10-23T04:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.