Learning Collective Variables from Time-lagged Generation
- URL: http://arxiv.org/abs/2507.07390v1
- Date: Thu, 10 Jul 2025 03:06:21 GMT
- Title: Learning Collective Variables from Time-lagged Generation
- Authors: Seonghyun Park, Kiyoung Seong, Soojung Yang, Rafael Gómez-Bombarelli, Sungsoo Ahn,
- Abstract summary: We propose TLC, a framework that learns CVs directly from time-lagged conditions of a generative model.<n>We validate TLC on the Alanine Dipeptide system using two CV-based enhanced sampling tasks.
- Score: 11.320404950685203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rare events such as state transitions are difficult to observe directly with molecular dynamics simulations due to long timescales. Enhanced sampling techniques overcome this by introducing biases along carefully chosen low-dimensional features, known as collective variables (CVs), which capture the slow degrees of freedom. Machine learning approaches (MLCVs) have automated CV discovery, but existing methods typically focus on discriminating meta-stable states without fully encoding the detailed dynamics essential for accurate sampling. We propose TLC, a framework that learns CVs directly from time-lagged conditions of a generative model. Instead of modeling the static Boltzmann distribution, TLC models a time-lagged conditional distribution yielding CVs to capture the slow dynamic behavior. We validate TLC on the Alanine Dipeptide system using two CV-based enhanced sampling tasks: (i) steered molecular dynamics (SMD) and (ii) on-the-fly probability enhanced sampling (OPES), demonstrating equal or superior performance compared to existing MLCV methods in both transition path sampling and state discrimination.
Related papers
- Learning collective variables that preserve transition rates [0.0]
Collective variables (CVs) play a crucial role in capturing rare events in high-dimensional systems.<n>We introduce a general numerical method for designing neural network-based CVs that integrates tools from manifold learning with group-invariant featurization.<n>We provide empirical evidence challenging the necessity of uniform positive definiteness in diffusion tensors for transition rate reproduction.
arXiv Detail & Related papers (2025-06-02T00:18:16Z) - Sequential Controlled Langevin Diffusions [80.93988625183485]
Two popular methods are (1) Sequential Monte Carlo (SMC), where the transport is performed through successive densities via prescribed Markov chains and resampling steps, and (2) recently developed diffusion-based sampling methods, where a learned dynamical transport is used.<n>We present a principled framework for combining SMC with diffusion-based samplers by viewing both methods in continuous time and considering measures on path space.<n>This culminates in the new Sequential Controlled Langevin Diffusion (SCLD) sampling method, which is able to utilize the benefits of both methods and reaches improved performance on multiple benchmark problems, in many cases using only 10% of the training budget of previous diffusion-
arXiv Detail & Related papers (2024-12-10T00:47:10Z) - Temporal Test-Time Adaptation with State-Space Models [4.248760709042802]
Adapting a model on test samples can help mitigate this drop in performance.
Most test-time adaptation methods have focused on synthetic corruption shifts.
We propose STAD, a probabilistic state-space model that adapts a deployed model to temporal distribution shifts.
arXiv Detail & Related papers (2024-07-17T11:18:49Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Learning Collective Variables with Synthetic Data Augmentation through Physics-Inspired Geodesic Interpolation [1.4972659820929493]
In molecular dynamics simulations, rare events, such as protein folding, are typically studied using enhanced sampling techniques.
We propose a simulation-free data augmentation strategy using physics-inspired metrics to generate geodesics resembling protein folding transitions.
arXiv Detail & Related papers (2024-02-02T16:35:02Z) - Semi-Supervised Class-Agnostic Motion Prediction with Pseudo Label
Regeneration and BEVMix [59.55173022987071]
We study the potential of semi-supervised learning for class-agnostic motion prediction.
Our framework adopts a consistency-based self-training paradigm, enabling the model to learn from unlabeled data.
Our method exhibits comparable performance to weakly and some fully supervised methods.
arXiv Detail & Related papers (2023-12-13T09:32:50Z) - Fast-Slow Test-Time Adaptation for Online Vision-and-Language Navigation [67.18144414660681]
We propose a Fast-Slow Test-Time Adaptation (FSTTA) approach for online Vision-and-Language Navigation (VLN)
Our method obtains impressive performance gains on four popular benchmarks.
arXiv Detail & Related papers (2023-11-22T07:47:39Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) is a generalization of Consistency Models (CM)
CTM enables the efficient combination of adversarial training and denoising score matching loss to enhance performance.
Unlike CM, CTM's access to the score function can streamline the adoption of established controllable/conditional generation methods.
arXiv Detail & Related papers (2023-10-01T05:07:17Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations [2.6009298669020477]
We provide a framework based on anisotropic diffusion maps for manifold learning.
We show that our framework reverts the biasing effect yielding CVs that correctly describe the equilibrium density.
We show that it can be used in many manifold learning techniques on data from both standard and enhanced sampling simulations.
arXiv Detail & Related papers (2022-07-29T08:59:56Z) - Learning Conditional Variational Autoencoders with Missing Covariates [0.8563354084119061]
Conditional variational autoencoders (CVAEs) are versatile deep generative models.
We develop computationally efficient methods to learn CVAEs and GP prior VAEs.
Our experiments on simulated datasets as well as on a clinical trial study show that the proposed method outperforms previous methods.
arXiv Detail & Related papers (2022-03-02T16:22:09Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
We propose HCL, a Hybrid generative-discriminative approach to Continual Learning for classification.
The flow is used to learn the data distribution, perform classification, identify task changes, and avoid forgetting.
We demonstrate the strong performance of HCL on a range of continual learning benchmarks such as split-MNIST, split-CIFAR, and SVHN-MNIST.
arXiv Detail & Related papers (2021-06-24T05:19:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.