論文の概要: Generalized Tree Edit Distance (GTED): A Faithful Evaluation Metric for Statement Autoformalization
- arxiv url: http://arxiv.org/abs/2507.07399v1
- Date: Thu, 10 Jul 2025 03:34:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.262583
- Title: Generalized Tree Edit Distance (GTED): A Faithful Evaluation Metric for Statement Autoformalization
- Title(参考訳): 汎用木編集距離(GTED):ステートメントオートフォーマル化のための忠実な評価指標
- Authors: Yuntian Liu, Tao Zhu, Xiaoyang Liu, Yu Chen, Zhaoxuan Liu, Qingfeng Guo, Jiashuo Zhang, Kangjie Bao, Tao Luo,
- Abstract要約: GTEDは形式文を標準化し、それらを演算木に変換する評価フレームワークである。
名前付きGTEDメトリックを用いて意味的類似性を決定する。
miniF2FとProofNetのベンチマークでは、GTEDはすべてのベースライン指標を上回っている。
- 参考スコア(独自算出の注目度): 10.371252490910422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Statement autoformalization, the automated translation of statement from natural language into formal languages, has become a subject of extensive research, yet the development of robust automated evaluation metrics remains limited. Existing evaluation methods often lack semantic understanding, face challenges with high computational costs, and are constrained by the current progress of automated theorem proving. To address these issues, we propose GTED (Generalized Tree Edit Distance), a novel evaluation framework that first standardizes formal statements and converts them into operator trees, then determines the semantic similarity using the eponymous GTED metric. On the miniF2F and ProofNet benchmarks, GTED outperforms all baseline metrics by achieving the highest accuracy and Kappa scores, thus providing the community with a more faithful metric for automated evaluation. The code and experimental results are available at https://github.com/XiaoyangLiu-sjtu/GTED.
- Abstract(参考訳): 自然言語から形式言語へのステートメントの自動翻訳であるステートメント自動形式化は、広範な研究の対象となっているが、ロバストな自動評価指標の開発は依然として限られている。
既存の評価手法は意味理解に欠けることが多く、計算コストの高い課題に直面しており、現在の自動定理証明の進歩に制約されている。
これらの問題に対処するため,我々はまず形式文を標準化し,それらを演算木に変換する新しい評価フレームワークであるGTED(Generalized Tree Edit Distance)を提案する。
miniF2FとProofNetのベンチマークでは、GTEDは最高精度とKappaスコアを達成し、すべてのベースラインメトリックよりも優れており、自動評価のためのより忠実なメトリックがコミュニティに提供する。
コードと実験結果はhttps://github.com/XiaoyangLiu-sjtu/GTEDで公開されている。
関連論文リスト
- Evaluating LLM-driven User-Intent Formalization for Verification-Aware Languages [6.0608817611709735]
本稿では,検証対応言語における仕様の質を評価するための指標を提案する。
MBPPコード生成ベンチマークのDafny仕様の人間ラベル付きデータセットに,我々の測定値が密接に一致することを示す。
また、このテクニックをより広く適用するために対処する必要がある正式な検証課題についても概説する。
論文 参考訳(メタデータ) (2024-06-14T06:52:08Z) - Generating Benchmarks for Factuality Evaluation of Language Models [61.69950787311278]
FACTOR: Factual Assessment via Corpus Transformation, a scalable approach for LM factuality。
FACTORは、興味のある事実のコーパスをLMの正当性を評価するベンチマークに自動的に変換し、コーパスから真事実を生成する。
その結果, (i) ベンチマークスコアはモデルサイズに応じて増加し, LMが検索によって拡張されたときに向上する; (ii) ベンチマークスコアとパープレキシティは必ずしもモデルランキングに一致しない; (iii) パープレキシティとベンチマークスコアが一致しない場合, 後者はオープンエンド世代における事実性を反映する。
論文 参考訳(メタデータ) (2023-07-13T17:14:38Z) - INSTRUCTSCORE: Explainable Text Generation Evaluation with Finegrained
Feedback [80.57617091714448]
テキスト生成のための説明可能な評価指標であるInstructScoreを提案する。
LLaMAに基づいてテキスト評価基準を微調整し、生成されたテキストのスコアと人間の可読性診断レポートを生成する。
論文 参考訳(メタデータ) (2023-05-23T17:27:22Z) - ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning [63.77667876176978]
大規模言語モデルでは、最終回答を正当化するためにステップバイステップの推論を生成するように促された場合、ダウンストリームタスクの解釈可能性が改善されている。
これらの推論ステップは、モデルの解釈可能性と検証を大幅に改善するが、客観的にそれらの正確性を研究することは困難である。
本稿では、従来のテキスト生成評価指標を改善し拡張する、解釈可能な教師なし自動スコアのスイートであるROSを提案する。
論文 参考訳(メタデータ) (2022-12-15T15:52:39Z) - On the Usefulness of Embeddings, Clusters and Strings for Text Generator
Evaluation [86.19634542434711]
Mauveは、弦上の2つの確率分布間の情報理論のばらつきを測定する。
我々は,Mauveが誤った理由で正しいことを示し,新たに提案された分岐はハイパフォーマンスには必要ないことを示した。
テキストの構文的およびコヒーレンスレベルの特徴を符号化することで、表面的な特徴を無視しながら、文字列分布に対するクラスタベースの代替品は、単に最先端の言語ジェネレータを評価するのに良いかもしれない、と結論付けています。
論文 参考訳(メタデータ) (2022-05-31T17:58:49Z) - TRUE: Re-evaluating Factual Consistency Evaluation [29.888885917330327]
TRUE: 多様なタスクから既存のテキストの標準化されたコレクション上での、事実整合性メトリクスの総合的な研究である。
我々の標準化により、前述した相関よりも動作可能で解釈可能なサンプルレベルのメタ評価プロトコルが実現される。
さまざまな最先端のメトリクスと11のデータセットから、大規模NLIと質問生成と回答に基づくアプローチが、強力で相補的な結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2022-04-11T10:14:35Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
本稿では,現実性評価指標を評価するメタ評価フレームワークGO FIGUREを紹介する。
10個の実測値のベンチマーク分析により、我々のフレームワークが堅牢で効率的な評価を提供することが明らかとなった。
また、QAメトリクスは、ドメイン間の事実性を測定する標準的なメトリクスよりも一般的に改善されているが、パフォーマンスは、質問を生成する方法に大きく依存していることも明らかにしている。
論文 参考訳(メタデータ) (2020-10-24T08:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。