Phishing Detection in the Gen-AI Era: Quantized LLMs vs Classical Models
- URL: http://arxiv.org/abs/2507.07406v1
- Date: Thu, 10 Jul 2025 04:01:52 GMT
- Title: Phishing Detection in the Gen-AI Era: Quantized LLMs vs Classical Models
- Authors: Jikesh Thapa, Gurrehmat Chahal, Serban Voinea Gabreanu, Yazan Otoum,
- Abstract summary: Phishing attacks are becoming increasingly sophisticated, underscoring the need for detection systems that strike a balance between high accuracy and computational efficiency.<n>This paper presents a comparative evaluation of traditional Machine Learning (ML), Deep Learning (DL), and quantized small- parameter Large Language Models (LLMs) for phishing detection.<n>We show that while LLMs currently underperform compared to ML and DL methods in terms of raw accuracy, they exhibit strong potential for identifying subtle, context-based phishing cues.
- Score: 1.4999444543328293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phishing attacks are becoming increasingly sophisticated, underscoring the need for detection systems that strike a balance between high accuracy and computational efficiency. This paper presents a comparative evaluation of traditional Machine Learning (ML), Deep Learning (DL), and quantized small-parameter Large Language Models (LLMs) for phishing detection. Through experiments on a curated dataset, we show that while LLMs currently underperform compared to ML and DL methods in terms of raw accuracy, they exhibit strong potential for identifying subtle, context-based phishing cues. We also investigate the impact of zero-shot and few-shot prompting strategies, revealing that LLM-rephrased emails can significantly degrade the performance of both ML and LLM-based detectors. Our benchmarking highlights that models like DeepSeek R1 Distill Qwen 14B (Q8_0) achieve competitive accuracy, above 80%, using only 17GB of VRAM, supporting their viability for cost-efficient deployment. We further assess the models' adversarial robustness and cost-performance tradeoffs, and demonstrate how lightweight LLMs can provide concise, interpretable explanations to support real-time decision-making. These findings position optimized LLMs as promising components in phishing defence systems and offer a path forward for integrating explainable, efficient AI into modern cybersecurity frameworks.
Related papers
- Smaller = Weaker? Benchmarking Robustness of Quantized LLMs in Code Generation [7.262231066394782]
Quantization has emerged as a mainstream method for compressing Large Language Models (LLMs)<n>We present the first systematic investigation of how quantization affects the robustness of LLMs in code generation tasks.<n>Our findings challenge conventional wisdom by demonstrating that quantized LLMs often exhibit superior robustness compared to their full-precision counterparts.
arXiv Detail & Related papers (2025-06-28T06:32:25Z) - Improving Phishing Email Detection Performance of Small Large Language Models [5.209583971923267]
Large language models(LLMs) have demonstrated remarkable performance on many natural language processing(NLP) tasks.<n>However, well-performing LLMs typically contain billions or even tens of billions of parameters, requiring enormous computational resources.
arXiv Detail & Related papers (2025-04-29T14:07:06Z) - EXPLICATE: Enhancing Phishing Detection through Explainable AI and LLM-Powered Interpretability [44.2907457629342]
EXPLICATE is a framework that enhances phishing detection through a three-component architecture.<n>It is on par with existing deep learning techniques but has better explainability.<n>It addresses the critical divide between automated AI and user trust in phishing detection systems.
arXiv Detail & Related papers (2025-03-22T23:37:35Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
Large language models (LLMs) are becoming more capable and widespread.<n>Recent advances in standardizing, measuring, and scaling test-time compute suggest new methodologies for optimizing models to achieve high performance on hard tasks.<n>In this paper, we apply these advances to the task of model jailbreaking: eliciting harmful responses from aligned LLMs.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.<n>We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.<n>LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - Activation Sparsity Opportunities for Compressing General Large Language Models [4.5624217435826]
This work systematically investigates the tradeoff between enforcing activation sparsity and perplexity (accuracy) on state-of-the-art AI models.<n>Our empirical analysis demonstrates that we can obtain around 50% of main memory and computing reductions for critical FFN components with negligible accuracy degradation.
arXiv Detail & Related papers (2024-12-13T02:26:54Z) - Efficient Self-Improvement in Multimodal Large Language Models: A Model-Level Judge-Free Approach [31.654345704242512]
This paper introduces a novel, model-level judge-free self-improvement framework.<n>Our approach employs a controlled feedback mechanism while eliminating the need for MLLMs in the verification loop.<n>We achieve superior precision and recall with significantly lower computational demands.
arXiv Detail & Related papers (2024-11-26T00:44:37Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Exploring Automatic Cryptographic API Misuse Detection in the Era of LLMs [60.32717556756674]
This paper introduces a systematic evaluation framework to assess Large Language Models in detecting cryptographic misuses.
Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives.
The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks.
arXiv Detail & Related papers (2024-07-23T15:31:26Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
Large language models (LLMs) have been treated as knowledge bases due to their strong performance in knowledge probing tasks.
How do we evaluate the capabilities of LLMs to consistently produce factually correct answers?
We propose MOdel kNowledge relIabiliTy scORe (MONITOR), a novel metric designed to directly measure LLMs' factual reliability.
arXiv Detail & Related papers (2023-10-15T12:40:30Z) - Compress, Then Prompt: Improving Accuracy-Efficiency Trade-off of LLM
Inference with Transferable Prompt [96.24800696597707]
We introduce a new perspective to optimize this trade-off by prompting compressed models.
We propose a soft prompt learning method where we expose the compressed model to the prompt learning process.
Our experimental analysis suggests our soft prompt strategy greatly improves the performance of the 8x compressed LLaMA-7B model.
arXiv Detail & Related papers (2023-05-17T20:45:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.