Resolving Token-Space Gradient Conflicts: Token Space Manipulation for Transformer-Based Multi-Task Learning
- URL: http://arxiv.org/abs/2507.07485v2
- Date: Mon, 21 Jul 2025 06:05:16 GMT
- Title: Resolving Token-Space Gradient Conflicts: Token Space Manipulation for Transformer-Based Multi-Task Learning
- Authors: Wooseong Jeong, Kuk-Jin Yoon,
- Abstract summary: Multi-Task Learning (MTL) enables multiple tasks to be learned within a shared network, but differences in objectives across tasks can cause negative transfer.<n>We propose Dynamic Token Modulation and Expansion (DTME-MTL), a framework applicable to any transformer-based MTL architecture.
- Score: 44.601029688423914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-Task Learning (MTL) enables multiple tasks to be learned within a shared network, but differences in objectives across tasks can cause negative transfer, where the learning of one task degrades another task's performance. While pre-trained transformers significantly improve MTL performance, their fixed network capacity and rigid structure limit adaptability. Previous dynamic network architectures attempt to address this but are inefficient as they directly convert shared parameters into task-specific ones. We propose Dynamic Token Modulation and Expansion (DTME-MTL), a framework applicable to any transformer-based MTL architecture. DTME-MTL enhances adaptability and reduces overfitting by identifying gradient conflicts in token space and applying adaptive solutions based on conflict type. Unlike prior methods that mitigate negative transfer by duplicating network parameters, DTME-MTL operates entirely in token space, enabling efficient adaptation without excessive parameter growth. Extensive experiments demonstrate that DTME-MTL consistently improves multi-task performance with minimal computational overhead, offering a scalable and effective solution for enhancing transformer-based MTL models.
Related papers
- Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.<n>Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.<n>We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge [78.26352952957909]
Multi-task large language models (MTLLMs) are important for many applications at the wireless edge, where users demand specialized models to handle multiple tasks efficiently.<n>The concept of model fusion via task vectors has emerged as an efficient approach for combining fine-tuning parameters to produce an MTLLM.<n>In this paper, the problem of enabling edge users to collaboratively craft such MTLMs via tasks vectors is studied, under the assumption of worst-case adversarial attacks.
arXiv Detail & Related papers (2024-11-27T10:57:06Z) - MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning [1.4396109429521227]
Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning.
parameter-efficient fine-tuning methods have emerged as a promising way to adapt pre-trained models to different tasks while training only a minimal number of parameters.
We introduce MTLoRA, a novel framework for parameter-efficient training of Multi-Task Learning models.
arXiv Detail & Related papers (2024-03-29T17:43:58Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
We propose a novel multi-task learning (MTL) architecture designed to mitigate task interference while optimizing inference computational efficiency.
We employ a learnable gating mechanism to automatically balance the shared and task-specific representations while preserving the performance of all tasks.
arXiv Detail & Related papers (2024-02-26T18:59:52Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Deformable Mixer Transformer with Gating for Multi-Task Learning of
Dense Prediction [126.34551436845133]
CNNs and Transformers have their own advantages and both have been widely used for dense prediction in multi-task learning (MTL)
We present a novel MTL model by combining both merits of deformable CNN and query-based Transformer with shared gating for multi-task learning of dense prediction.
arXiv Detail & Related papers (2023-08-10T17:37:49Z) - M$^3$ViT: Mixture-of-Experts Vision Transformer for Efficient Multi-task
Learning with Model-Accelerator Co-design [95.41238363769892]
Multi-task learning (MTL) encapsulates multiple learned tasks in a single model and often lets those tasks learn better jointly.
Current MTL regimes have to activate nearly the entire model even to just execute a single task.
We present a model-accelerator co-design framework to enable efficient on-device MTL.
arXiv Detail & Related papers (2022-10-26T15:40:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.