MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning
- URL: http://arxiv.org/abs/2403.20320v1
- Date: Fri, 29 Mar 2024 17:43:58 GMT
- Title: MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning
- Authors: Ahmed Agiza, Marina Neseem, Sherief Reda,
- Abstract summary: Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning.
parameter-efficient fine-tuning methods have emerged as a promising way to adapt pre-trained models to different tasks while training only a minimal number of parameters.
We introduce MTLoRA, a novel framework for parameter-efficient training of Multi-Task Learning models.
- Score: 1.4396109429521227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning. Consequently, parameter-efficient fine-tuning methods have emerged as a promising way to adapt pre-trained models to different tasks while training only a minimal number of parameters. While most of these methods are designed for single-task adaptation, parameter-efficient training in Multi-Task Learning (MTL) architectures is still unexplored. In this paper, we introduce MTLoRA, a novel framework for parameter-efficient training of MTL models. MTLoRA employs Task-Agnostic and Task-Specific Low-Rank Adaptation modules, which effectively disentangle the parameter space in MTL fine-tuning, thereby enabling the model to adeptly handle both task specialization and interaction within MTL contexts. We applied MTLoRA to hierarchical-transformer-based MTL architectures, adapting them to multiple downstream dense prediction tasks. Our extensive experiments on the PASCAL dataset show that MTLoRA achieves higher accuracy on downstream tasks compared to fully fine-tuning the MTL model while reducing the number of trainable parameters by 3.6x. Furthermore, MTLoRA establishes a Pareto-optimal trade-off between the number of trainable parameters and the accuracy of the downstream tasks, outperforming current state-of-the-art parameter-efficient training methods in both accuracy and efficiency. Our code is publicly available.
Related papers
- MIRA: A Method of Federated MultI-Task Learning for LaRge LAnguage Models [29.655807841018497]
We introduce a method for fine-tuning Large Language Models (LLMs)
Our approach leverages the structure of each client's model and enables a learning scheme that considers other clients' tasks and data distribution.
Experimental results, with different datasets and models, demonstrate the proposed method's effectiveness.
arXiv Detail & Related papers (2024-10-20T22:24:40Z) - MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning [74.43869839954168]
We propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing multi-task learning capabilities.
MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information.
This approach enables large language models (LLMs) pre-trained on general corpus to adapt to different target task domains with a limited number of trainable parameters.
arXiv Detail & Related papers (2024-10-12T08:32:26Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts [6.245113492272563]
Mixture of Dyadic Experts (MoDE) is a novel design for efficient multi-task adaptation.
Our design allows for more fine-grained mixing, thereby increasing the model's ability to jointly handle multiple tasks.
arXiv Detail & Related papers (2024-08-02T18:05:10Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - AdaTask: A Task-aware Adaptive Learning Rate Approach to Multi-task
Learning [19.201899503691266]
We measure the task dominance degree of a parameter by the total updates of each task on this parameter.
We propose a Task-wise Adaptive learning rate approach, AdaTask, to separate the emphaccumulative gradients and hence the learning rate of each task.
Experiments on computer vision and recommender system MTL datasets demonstrate that AdaTask significantly improves the performance of dominated tasks.
arXiv Detail & Related papers (2022-11-28T04:24:38Z) - Task Adaptive Parameter Sharing for Multi-Task Learning [114.80350786535952]
Adaptive Task Adapting Sharing (TAPS) is a method for tuning a base model to a new task by adaptively modifying a small, task-specific subset of layers.
Compared to other methods, TAPS retains high accuracy on downstream tasks while introducing few task-specific parameters.
We evaluate our method on a suite of fine-tuning tasks and architectures (ResNet, DenseNet, ViT) and show that it achieves state-of-the-art performance while being simple to implement.
arXiv Detail & Related papers (2022-03-30T23:16:07Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z) - Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning
in NLP Using Fewer Parameters & Less Data [5.689320790746046]
Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks.
However, MTL must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer.
We propose a novel Transformer architecture consisting of a new conditional attention mechanism and a set of task-conditioned modules.
arXiv Detail & Related papers (2020-09-19T02:04:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.