Improving Planning with Large Language Models: A Modular Agentic Architecture
- URL: http://arxiv.org/abs/2310.00194v4
- Date: Thu, 03 Oct 2024 20:49:30 GMT
- Title: Improving Planning with Large Language Models: A Modular Agentic Architecture
- Authors: Taylor Webb, Shanka Subhra Mondal, Ida Momennejad,
- Abstract summary: Large language models (LLMs) often struggle with tasks that require multi-step reasoning or goal-directed planning.
We propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of specialized modules.
We find that MAP yields significant improvements over both standard LLM methods.
- Score: 7.63815864256878
- License:
- Abstract: Large language models (LLMs) demonstrate impressive performance on a wide variety of tasks, but they often struggle with tasks that require multi-step reasoning or goal-directed planning. Both cognitive neuroscience and reinforcement learning (RL) have proposed a number of interacting functional components that together implement search and evaluation in multi-step decision making. These components include conflict monitoring, state prediction, state evaluation, task decomposition, and orchestration. To improve planning with LLMs, we propose an agentic architecture, the Modular Agentic Planner (MAP), in which planning is accomplished via the recurrent interaction of the specialized modules mentioned above, each implemented using an LLM. MAP improves planning through the interaction of specialized modules that break down a larger problem into multiple brief automated calls to the LLM. We evaluate MAP on three challenging planning tasks -- graph traversal, Tower of Hanoi, and the PlanBench benchmark -- as well as an NLP task requiring multi-step reasoning (strategyQA). We find that MAP yields significant improvements over both standard LLM methods (zero-shot prompting, in-context learning) and competitive baselines (chain-of-thought, multi-agent debate, and tree-of-thought), can be effectively combined with smaller and more cost-efficient LLMs (Llama3-70B), and displays superior transfer across tasks. These results suggest the benefit of a modular and multi-agent approach to planning with LLMs.
Related papers
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - Scaling Up Natural Language Understanding for Multi-Robots Through the Lens of Hierarchy [8.180994118420053]
Long-horizon planning is hindered by challenges such as uncertainty accumulation, computational complexity, delayed rewards and incomplete information.
This work proposes an approach to exploit the task hierarchy from human instructions to facilitate multi-robot planning.
arXiv Detail & Related papers (2024-08-15T14:46:13Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
This work lays the foundations for improving planning capabilities of large language models (LLMs)
We construct a comprehensive benchmark suite encompassing both classical planning benchmarks and natural language scenarios.
We investigate the use of many-shot in-context learning to enhance LLM planning, exploring the relationship between increased context length and improved planning performance.
arXiv Detail & Related papers (2024-06-18T22:57:06Z) - A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models [15.874604623294427]
Multi-Phases planning problem involves multiple interconnected stages, such as outlining, information gathering, and planning.
Existing reasoning approaches have struggled to effectively address this complex task.
Our research aims to address this challenge by developing a human-like planning framework for LLM agents.
arXiv Detail & Related papers (2024-05-28T14:13:32Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Understanding the planning of LLM agents: A survey [98.82513390811148]
This survey provides the first systematic view of LLM-based agents planning, covering recent works aiming to improve planning ability.
Comprehensive analyses are conducted for each direction, and further challenges in the field of research are discussed.
arXiv Detail & Related papers (2024-02-05T04:25:24Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
We introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT)
ADaPT explicitly plans and decomposes complex sub-tasks as-needed, when the Large Language Models is unable to execute them.
Our results demonstrate that ADaPT substantially outperforms established strong baselines.
arXiv Detail & Related papers (2023-11-08T17:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.