Spline Deformation Field
- URL: http://arxiv.org/abs/2507.07521v2
- Date: Fri, 11 Jul 2025 12:49:53 GMT
- Title: Spline Deformation Field
- Authors: Mingyang Song, Yang Zhang, Marko Mihajlovic, Siyu Tang, Markus Gross, Tunç Ozan Aydın,
- Abstract summary: inductive biases can hinder canonical spatial coherence in ill-posed scenarios.<n>We introduce a novel low-rank spatial encoding, replacing conventional coupled techniques.<n>It achieves competitive dynamic reconstruction quality compared to state-of-the-art methods.
- Score: 21.755382164519776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory modeling of dense points usually employs implicit deformation fields, represented as neural networks that map coordinates to relate canonical spatial positions to temporal offsets. However, the inductive biases inherent in neural networks can hinder spatial coherence in ill-posed scenarios. Current methods focus either on enhancing encoding strategies for deformation fields, often resulting in opaque and less intuitive models, or adopt explicit techniques like linear blend skinning, which rely on heuristic-based node initialization. Additionally, the potential of implicit representations for interpolating sparse temporal signals remains under-explored. To address these challenges, we propose a spline-based trajectory representation, where the number of knots explicitly determines the degrees of freedom. This approach enables efficient analytical derivation of velocities, preserving spatial coherence and accelerations, while mitigating temporal fluctuations. To model knot characteristics in both spatial and temporal domains, we introduce a novel low-rank time-variant spatial encoding, replacing conventional coupled spatiotemporal techniques. Our method demonstrates superior performance in temporal interpolation for fitting continuous fields with sparse inputs. Furthermore, it achieves competitive dynamic scene reconstruction quality compared to state-of-the-art methods while enhancing motion coherence without relying on linear blend skinning or as-rigid-as-possible constraints.
Related papers
- 4Deform: Neural Surface Deformation for Robust Shape Interpolation [47.47045870313048]
We develop a new approach to generate realistic intermediate shapes between non-rigidly deformed shapes in unstructured data.<n>Our method learns a continuous velocity field in Euclidean space and does not require intermediate-shape supervision during training.<n>For the first time, our method enables new applications like 4D Kinect sequence upsampling and real-world high-resolution mesh deformation.
arXiv Detail & Related papers (2025-02-27T15:47:49Z) - Linear Attention is Enough in Spatial-Temporal Forecasting [0.0]
We propose treating nodes in road networks at different time steps as independent spatial-temporal tokens.
We then feed them into a vanilla Transformer to learn complex spatial-temporal patterns.
Our code achieves state-of-the-art performance at an affordable computational cost.
arXiv Detail & Related papers (2024-08-17T10:06:50Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
Anomaly detection in dynamic graphs presents a significant challenge due to the temporal evolution of graph structures and attributes.
We introduce a novel spatial- temporal memories-enhanced graph autoencoder (STRIPE)
STRIPE significantly outperforms existing methods with 5.8% improvement in AUC scores and 4.62X faster in training time.
arXiv Detail & Related papers (2024-03-14T02:26:10Z) - Smooth and Sparse Latent Dynamics in Operator Learning with Jerk
Regularization [1.621267003497711]
This paper introduces a continuous operator learning framework that incorporates jagged regularization into the learning of the compressed latent space.
The framework allows for inference at any desired spatial or temporal resolution.
The effectiveness of this framework is demonstrated through a two-dimensional unsteady flow problem governed by the Navier-Stokes equations.
arXiv Detail & Related papers (2024-02-23T22:38:45Z) - Learning optimal integration of spatial and temporal information in
noisy chemotaxis [0.0]
We investigate the boundary between chemotaxis driven by spatial estimation of gradients and chemotaxis driven by temporal estimation.
We parameterize a combined chemotactic policy by a recurrent neural network and evaluate it using a minimal theoretical model of a chemotactic cell.
We find that the transition between the regimes is continuous, with the combined strategy outperforming in the transition region.
arXiv Detail & Related papers (2023-10-16T15:50:23Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Spatio-Temporal Branching for Motion Prediction using Motion Increments [55.68088298632865]
Human motion prediction (HMP) has emerged as a popular research topic due to its diverse applications.
Traditional methods rely on hand-crafted features and machine learning techniques.
We propose a noveltemporal-temporal branching network using incremental information for HMP.
arXiv Detail & Related papers (2023-08-02T12:04:28Z) - Implicit Neural Spatial Representations for Time-dependent PDEs [29.404161110513616]
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields.
This work explores solving time-dependent PDEs with INSR.
arXiv Detail & Related papers (2022-09-30T22:46:40Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
We present a method for adaptive tuning of the low-dimensional latent space of deep encoder-decoder style CNNs.
We demonstrate our approach for predicting the properties of a time-varying charged particle beam in a particle accelerator.
arXiv Detail & Related papers (2021-05-08T03:50:45Z) - Conditional Local Filters with Explainers for Spatio-Temporal
Forecasting [27.62110162024104]
A novel graph-based directed convolution is proposed to capture the spatial dependency.
The filter is embedded in a Recurrent Neural Network (RNN) architecture for modeling the temporal dynamics.
The methods are evaluated on real-world datasets including road network traffic flow, earth surface temperature & wind flows and disease spread datasets.
arXiv Detail & Related papers (2021-01-04T14:22:11Z) - Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow
Forecasting [35.072979313851235]
spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads.
Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations.
This paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting.
arXiv Detail & Related papers (2020-12-15T14:03:17Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Time Dependence in Non-Autonomous Neural ODEs [74.78386661760662]
We propose a novel family of Neural ODEs with time-varying weights.
We outperform previous Neural ODE variants in both speed and representational capacity.
arXiv Detail & Related papers (2020-05-05T01:41:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.