ArchiveGPT: A human-centered evaluation of using a vision language model for image cataloguing
- URL: http://arxiv.org/abs/2507.07551v1
- Date: Thu, 10 Jul 2025 08:49:15 GMT
- Title: ArchiveGPT: A human-centered evaluation of using a vision language model for image cataloguing
- Authors: Line Abele, Gerrit Anders, Tolgahan Aydın, Jürgen Buder, Helen Fischer, Dominik Kimmel, Markus Huff,
- Abstract summary: This study examines whether Al-generated catalogue descriptions can approximate human-written quality.<n>A VLM (InternVL2) generated catalogue descriptions for photographic prints on labelled cardboard mounts with archaeological content.<n>Findings advocate for a collaborative approach where AI supports draft generation but remains subordinate to human verification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The accelerating growth of photographic collections has outpaced manual cataloguing, motivating the use of vision language models (VLMs) to automate metadata generation. This study examines whether Al-generated catalogue descriptions can approximate human-written quality and how generative Al might integrate into cataloguing workflows in archival and museum collections. A VLM (InternVL2) generated catalogue descriptions for photographic prints on labelled cardboard mounts with archaeological content, evaluated by archive and archaeology experts and non-experts in a human-centered, experimental framework. Participants classified descriptions as AI-generated or expert-written, rated quality, and reported willingness to use and trust in AI tools. Classification performance was above chance level, with both groups underestimating their ability to detect Al-generated descriptions. OCR errors and hallucinations limited perceived quality, yet descriptions rated higher in accuracy and usefulness were harder to classify, suggesting that human review is necessary to ensure the accuracy and quality of catalogue descriptions generated by the out-of-the-box model, particularly in specialized domains like archaeological cataloguing. Experts showed lower willingness to adopt AI tools, emphasizing concerns on preservation responsibility over technical performance. These findings advocate for a collaborative approach where AI supports draft generation but remains subordinate to human verification, ensuring alignment with curatorial values (e.g., provenance, transparency). The successful integration of this approach depends not only on technical advancements, such as domain-specific fine-tuning, but even more on establishing trust among professionals, which could both be fostered through a transparent and explainable AI pipeline.
Related papers
- ForenX: Towards Explainable AI-Generated Image Detection with Multimodal Large Language Models [82.04858317800097]
We present ForenX, a novel method that not only identifies the authenticity of images but also provides explanations that resonate with human thoughts.<n>ForenX employs the powerful multimodal large language models (MLLMs) to analyze and interpret forensic cues.<n>We introduce ForgReason, a dataset dedicated to descriptions of forgery evidences in AI-generated images.
arXiv Detail & Related papers (2025-08-02T15:21:26Z) - The AI Imperative: Scaling High-Quality Peer Review in Machine Learning [49.87236114682497]
We argue that AI-assisted peer review must become an urgent research and infrastructure priority.<n>We propose specific roles for AI in enhancing factual verification, guiding reviewer performance, assisting authors in quality improvement, and supporting ACs in decision-making.
arXiv Detail & Related papers (2025-06-09T18:37:14Z) - FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics [66.14786900470158]
We propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics.<n>FakeScope identifies AI-synthetic images with high accuracy and provides rich, interpretable, and query-driven forensic insights.<n>FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios.
arXiv Detail & Related papers (2025-03-31T16:12:48Z) - Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook [85.43403500874889]
Retrieval-augmented generation (RAG) has emerged as a pivotal technique in artificial intelligence (AI)<n>Recent advancements in RAG for embodied AI, with a particular focus on applications in planning, task execution, multimodal perception, interaction, and specialized domains.
arXiv Detail & Related papers (2025-03-23T10:33:28Z) - Trust at Your Own Peril: A Mixed Methods Exploration of the Ability of Large Language Models to Generate Expert-Like Systems Engineering Artifacts and a Characterization of Failure Modes [0.0]
We present results from an empirical exploration, where a human expert-generated SE artifact was taken as a benchmark.<n>We then adopted a two-fold mixed-methods approach to compare AI generated artifacts against the benchmark.<n>We find that while the two-material appear very similar, AI generated artifacts exhibit serious failure modes that could be difficult to detect.
arXiv Detail & Related papers (2025-02-13T17:05:18Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - Quantitative Assurance and Synthesis of Controllers from Activity
Diagrams [4.419843514606336]
Probabilistic model checking is a widely used formal verification technique to automatically verify qualitative and quantitative properties.
This makes it not accessible for researchers and engineers who may not have the required knowledge.
We propose a comprehensive verification framework for ADs, including a new profile for probability time, quality annotations, a semantics interpretation of ADs in three Markov models, and a set of transformation rules from activity diagrams to the PRISM language.
Most importantly, we developed algorithms for transformation and implemented them in a tool, called QASCAD, using model-based techniques, for fully automated verification.
arXiv Detail & Related papers (2024-02-29T22:40:39Z) - Document AI: A Comparative Study of Transformer-Based, Graph-Based
Models, and Convolutional Neural Networks For Document Layout Analysis [3.231170156689185]
Document AI aims to automatically analyze documents by leveraging natural language processing and computer vision techniques.
One of the major tasks of Document AI is document layout analysis, which structures document pages by interpreting the content and spatial relationships of layout, image, and text.
arXiv Detail & Related papers (2023-08-29T16:58:03Z) - Beyond Labels: Empowering Human Annotators with Natural Language
Explanations through a Novel Active-Learning Architecture [43.85335847262138]
Real-world domain experts (e.g., doctors) rarely annotate only a decision label in their day-to-day workflow without providing explanations.
This work proposes a novel Active Learning architecture to support experts' real-world need for label and explanation annotations.
arXiv Detail & Related papers (2023-05-22T04:38:10Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.