Sparse Causal Discovery with Generative Intervention for Unsupervised Graph Domain Adaptation
- URL: http://arxiv.org/abs/2507.07621v1
- Date: Thu, 10 Jul 2025 10:42:21 GMT
- Title: Sparse Causal Discovery with Generative Intervention for Unsupervised Graph Domain Adaptation
- Authors: Junyu Luo, Yuhao Tang, Yiwei Fu, Xiao Luo, Zhizhuo Kou, Zhiping Xiao, Wei Ju, Wentao Zhang, Ming Zhang,
- Abstract summary: Unsupervised Graph Domain Adaptation (UGDA) leverages labeled source domain graphs to achieve effective performance in unlabeled target domains despite distribution shifts.<n>We propose SLOGAN, a novel approach that achieves stable graph representation transfer through sparse causal modeling and dynamic intervention mechanisms.
- Score: 27.5393760658806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised Graph Domain Adaptation (UGDA) leverages labeled source domain graphs to achieve effective performance in unlabeled target domains despite distribution shifts. However, existing methods often yield suboptimal results due to the entanglement of causal-spurious features and the failure of global alignment strategies. We propose SLOGAN (Sparse Causal Discovery with Generative Intervention), a novel approach that achieves stable graph representation transfer through sparse causal modeling and dynamic intervention mechanisms. Specifically, SLOGAN first constructs a sparse causal graph structure, leveraging mutual information bottleneck constraints to disentangle sparse, stable causal features while compressing domain-dependent spurious correlations through variational inference. To address residual spurious correlations, we innovatively design a generative intervention mechanism that breaks local spurious couplings through cross-domain feature recombination while maintaining causal feature semantic consistency via covariance constraints. Furthermore, to mitigate error accumulation in target domain pseudo-labels, we introduce a category-adaptive dynamic calibration strategy, ensuring stable discriminative learning. Extensive experiments on multiple real-world datasets demonstrate that SLOGAN significantly outperforms existing baselines.
Related papers
- Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Unsupervised Structural-Counterfactual Generation under Domain Shift [0.0]
We present a novel generative modeling challenge: generating counterfactual samples in a target domain based on factual observations from a source domain.<n>Our framework combines the posterior distribution of effect-intrinsic variables from the source domain with the prior distribution of domain-intrinsic variables from the target domain to synthesize the desired counterfactuals.
arXiv Detail & Related papers (2025-02-17T16:48:16Z) - From Deterministic to Probabilistic: A Novel Perspective on Domain Generalization for Medical Image Segmentation [1.93061220186624]
We propose an innovative framework that enhances data representation quality through probabilistic modeling and contrastive learning.<n>Specifically, we combine deterministic features with uncertainty modeling to capture comprehensive feature distributions.<n>We show that the proposed framework significantly improves segmentation performance, providing a robust solution to domain generalization challenges in medical image segmentation.
arXiv Detail & Related papers (2024-12-07T07:41:04Z) - DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains.
Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process.
We introduce a more realistic graph data generation model using Structural Causal Models (SCMs)
We propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings.
arXiv Detail & Related papers (2024-10-27T00:22:18Z) - Causally-Aware Unsupervised Feature Selection Learning [15.20376149047008]
Unsupervised feature selection (UFS) has recently gained attention for its effectiveness in processing unlabeled high-dimensional data.<n>Previous graph-based methods fail to account for the differing impacts of non-causal and causal features in constructing the similarity graph.<n>A novel UFS method, called Causally-Aware UnSupErvised Feature Selection learning (CAUSE-FS), is proposed.
arXiv Detail & Related papers (2024-10-16T04:41:38Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
This paper studies the causal representation learning problem when latent causal variables are observed indirectly.
The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables.
arXiv Detail & Related papers (2023-01-19T18:39:48Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
We propose a new and general framework for DomainD, named Foreground-aware Graph-based Reasoning (FGRR)
FGRR incorporates graph structures into the detection pipeline to explicitly model the intra- and inter-domain foreground object relations.
Empirical results demonstrate that the proposed FGRR exceeds the state-of-the-art on four DomainD benchmarks.
arXiv Detail & Related papers (2022-06-06T05:12:48Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Self-Guided Adaptation: Progressive Representation Alignment for Domain
Adaptive Object Detection [86.69077525494106]
Unsupervised domain adaptation (UDA) has achieved unprecedented success in improving the cross-domain robustness of object detection models.
Existing UDA methods largely ignore the instantaneous data distribution during model learning, which could deteriorate the feature representation given large domain shift.
We propose a Self-Guided Adaptation (SGA) model, target at aligning feature representation and transferring object detection models across domains.
arXiv Detail & Related papers (2020-03-19T13:30:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.