Partial Transportability for Domain Generalization
- URL: http://arxiv.org/abs/2503.23605v1
- Date: Sun, 30 Mar 2025 22:06:37 GMT
- Title: Partial Transportability for Domain Generalization
- Authors: Kasra Jalaldoust, Alexis Bellot, Elias Bareinboim,
- Abstract summary: Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
- Score: 56.37032680901525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A fundamental task in AI is providing performance guarantees for predictions made in unseen domains. In practice, there can be substantial uncertainty about the distribution of new data, and corresponding variability in the performance of existing predictors. Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution, such as the generalization error of a classifier, given data from source domains and assumptions about the data generating mechanisms, encoded in causal diagrams. Our contribution is to provide the first general estimation technique for transportability problems, adapting existing parameterization schemes such Neural Causal Models to encode the structural constraints necessary for cross-population inference. We demonstrate the expressiveness and consistency of this procedure and further propose a gradient-based optimization scheme for making scalable inferences in practice. Our results are corroborated with experiments.
Related papers
- Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
We introduce a strong notion of invariance that allows for distribution generalization even in the presence of nonlinear, non-identifiable structural functions.<n>We propose the ControlTwicing algorithm to estimate the Boosted Control Function (BCF) using flexible machine-learning techniques.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Causality-oriented robustness: exploiting general noise interventions [4.64479351797195]
In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG)<n>DRIG exploits general noise interventions in training data for robust predictions against unseen interventions.<n>We show that our framework includes anchor regression as a special case, and that it yields prediction models that protect against more diverse perturbations.
arXiv Detail & Related papers (2023-07-18T16:22:50Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Towards Principled Disentanglement for Domain Generalization [90.9891372499545]
A fundamental challenge for machine learning models is generalizing to out-of-distribution (OOD) data.
We first formalize the OOD generalization problem as constrained optimization, called Disentanglement-constrained Domain Generalization (DDG)
Based on the transformation, we propose a primal-dual algorithm for joint representation disentanglement and domain generalization.
arXiv Detail & Related papers (2021-11-27T07:36:32Z) - Domain Generalization via Domain-based Covariance Minimization [4.414778226415752]
We propose a novel variance measurement for multiple domains so as to minimize the difference between conditional distributions across domains.
We show that for small-scale datasets, we are able to achieve better quantitative results indicating better generalization performance over unseen test datasets.
arXiv Detail & Related papers (2021-10-12T19:30:15Z) - Variational Disentanglement for Domain Generalization [68.85458536180437]
We propose to tackle the problem of domain generalization by delivering an effective framework named Variational Disentanglement Network (VDN)
VDN is capable of disentangling the domain-specific features and task-specific features, where the task-specific features are expected to be better generalized to unseen but related test data.
arXiv Detail & Related papers (2021-09-13T09:55:32Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
We present a comprehensive minimax analysis from a causal perspective.
We propose an efficient algorithm to search for the subset with minimal worst-case risk.
The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
arXiv Detail & Related papers (2021-07-05T09:07:29Z) - Domain Conditional Predictors for Domain Adaptation [3.951376400628575]
We consider a conditional modeling approach in which predictions, in addition to being dependent on the input data, use information relative to the underlying data-generating distribution.
We argue that such an approach is more generally applicable than current domain adaptation methods.
arXiv Detail & Related papers (2021-06-25T22:15:54Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Polynomial-Time Exact MAP Inference on Discrete Models with Global
Dependencies [83.05591911173332]
junction tree algorithm is the most general solution for exact MAP inference with run-time guarantees.
We propose a new graph transformation technique via node cloning which ensures a run-time for solving our target problem independently of the form of a corresponding clique tree.
arXiv Detail & Related papers (2019-12-27T13:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.