論文の概要: Compressive Imaging Reconstruction via Tensor Decomposed Multi-Resolution Grid Encoding
- arxiv url: http://arxiv.org/abs/2507.07707v1
- Date: Thu, 10 Jul 2025 12:36:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.397125
- Title: Compressive Imaging Reconstruction via Tensor Decomposed Multi-Resolution Grid Encoding
- Title(参考訳): テンソル分解多解格子符号化による圧縮画像再構成
- Authors: Zhenyu Jin, Yisi Luo, Xile Zhao, Deyu Meng,
- Abstract要約: 圧縮画像再構成(CI)は, 圧縮された低次元画像から高次元画像を復元することを目的としている。
既存の教師なし表現は、表現能力と効率の間の望ましいバランスを達成するのに苦労する。
本稿では,CI再構成のための非教師なし連続表現フレームワークである分割多重解像度グリッド符号化(GridTD)を提案する。
- 参考スコア(独自算出の注目度): 50.54887630778593
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Compressive imaging (CI) reconstruction, such as snapshot compressive imaging (SCI) and compressive sensing magnetic resonance imaging (MRI), aims to recover high-dimensional images from low-dimensional compressed measurements. This process critically relies on learning an accurate representation of the underlying high-dimensional image. However, existing unsupervised representations may struggle to achieve a desired balance between representation ability and efficiency. To overcome this limitation, we propose Tensor Decomposed multi-resolution Grid encoding (GridTD), an unsupervised continuous representation framework for CI reconstruction. GridTD optimizes a lightweight neural network and the input tensor decomposition model whose parameters are learned via multi-resolution hash grid encoding. It inherently enjoys the hierarchical modeling ability of multi-resolution grid encoding and the compactness of tensor decomposition, enabling effective and efficient reconstruction of high-dimensional images. Theoretical analyses for the algorithm's Lipschitz property, generalization error bound, and fixed-point convergence reveal the intrinsic superiority of GridTD as compared with existing continuous representation models. Extensive experiments across diverse CI tasks, including video SCI, spectral SCI, and compressive dynamic MRI reconstruction, consistently demonstrate the superiority of GridTD over existing methods, positioning GridTD as a versatile and state-of-the-art CI reconstruction method.
- Abstract(参考訳): 圧縮画像(CI)の再構成(スナップショット圧縮画像(SCI)や圧縮センシング磁気共鳴画像(MRI))は、低次元圧縮画像から高次元画像を復元することを目的としている。
このプロセスは、基礎となる高次元画像の正確な表現を学ぶことに依存する。
しかし、既存の教師なし表現は、表現能力と効率の間の望ましいバランスを達成するのに苦労するかもしれない。
この制限を克服するために、CI再構成のための教師なし連続表現フレームワークであるTensor Decomposed Multi- resolution Grid encoding (GridTD)を提案する。
GridTDは、マルチ解像度のハッシュグリッド符号化を通じてパラメータを学習する軽量ニューラルネットワークと入力テンソル分解モデルを最適化する。
本質的にはマルチ解像度グリッド符号化の階層的モデリング能力とテンソル分解のコンパクトさを享受し、高次元画像の効率的かつ効率的な再構成を可能にする。
アルゴリズムのリプシッツ特性、一般化誤差境界、固定点収束の理論解析は、既存の連続表現モデルと比較してGridTDの本質的な優位性を明らかにする。
ビデオSCI、スペクトルSCI、圧縮動的MRI再構成を含む多種多様なCIタスクにわたる広範な実験は、GridTDが既存の手法よりも優れていることを一貫して示し、GridTDを汎用的で最先端のCI再構成手法として位置づけている。
関連論文リスト
- Mixed-granularity Implicit Representation for Continuous Hyperspectral Compressive Reconstruction [16.975538181162616]
本研究では,暗黙的ニューラル表現を用いた連続型ハイパースペクトル画像再構成法を提案する。
暗黙的な神経表現を活用することで、MGIRフレームワークは任意の望まれる空間スペクトル分解能の再構成を可能にする。
論文 参考訳(メタデータ) (2025-03-17T03:37:42Z) - Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction [10.330083869344445]
グラフ画像優先(GIP)と呼ばれる動的MRI表現のための新しい手法を提案する。
GIPは2段階生成ネットワークを新しいモデリング手法に採用し、まず独立したCNNを用いて各フレームのイメージ構造を復元する。
グラフ畳み込みネットワークは特徴融合と画像生成に利用される。
論文 参考訳(メタデータ) (2024-03-23T08:57:46Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
本稿では,ハイパースペクトル(HS)画像の難解化問題に対処する。
ランク付き低次元畳み込み集合(Re-ConvSet)を提案する。
次に、Re-ConvSetを広く使われているU-Netアーキテクチャに組み込んで、HS画像復号法を構築する。
論文 参考訳(メタデータ) (2022-07-09T13:35:12Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
本稿では,CCoT(Contextual Transformer)ブロックというハイブリッドネットワークモジュールを提案する。
提案したCCoTブロックを,一般化された交互投影アルゴリズムに基づく深層展開フレームワークに統合し,さらにGAP-CTネットワークを提案する。
論文 参考訳(メタデータ) (2022-01-15T06:30:03Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
強い散乱準透明物体の有限角トモグラフィーは困難で、非常に不適切な問題である。
このような問題の状況を改善することにより、アーティファクトの削減には、事前の定期化が必要である。
我々は,新しい分割畳み込みゲート再帰ユニット(SC-GRU)をビルディングブロックとして,リカレントニューラルネットワーク(RNN)アーキテクチャを考案した。
論文 参考訳(メタデータ) (2020-07-21T11:48:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。