BEAVER: Building Environments with Assessable Variation for Evaluating Multi-Objective Reinforcement Learning
- URL: http://arxiv.org/abs/2507.07769v3
- Date: Fri, 25 Jul 2025 22:18:43 GMT
- Title: BEAVER: Building Environments with Assessable Variation for Evaluating Multi-Objective Reinforcement Learning
- Authors: Ruohong Liu, Jack Umenberger, Yize Chen,
- Abstract summary: We develop a novel benchmark to facilitate the evaluation of generalizable reinforcement learning algorithms in building control tasks.<n>Our results show that existing multi-objective RL methods are capable of achieving reasonable trade-offs between conflicting objectives.
- Score: 4.342241136871849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have seen significant advancements in designing reinforcement learning (RL)-based agents for building energy management. While individual success is observed in simulated or controlled environments, the scalability of RL approaches in terms of efficiency and generalization across building dynamics and operational scenarios remains an open question. In this work, we formally characterize the generalization space for the cross-environment, multi-objective building energy management task, and formulate the multi-objective contextual RL problem. Such a formulation helps understand the challenges of transferring learned policies across varied operational contexts such as climate and heat convection dynamics under multiple control objectives such as comfort level and energy consumption. We provide a principled way to parameterize such contextual information in realistic building RL environments, and construct a novel benchmark to facilitate the evaluation of generalizable RL algorithms in practical building control tasks. Our results show that existing multi-objective RL methods are capable of achieving reasonable trade-offs between conflicting objectives. However, their performance degrades under certain environment variations, underscoring the importance of incorporating dynamics-dependent contextual information into the policy learning process.
Related papers
- MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - On Generalization Across Environments In Multi-Objective Reinforcement Learning [6.686583184622338]
We formalize the concept of generalization in Multi-Objective Reinforcement Learning (MORL) and how it can be evaluated.<n>We contribute a novel benchmark featuring diverse multi-objective domains with parameterized environment configurations.<n>Our baseline evaluations of state-of-the-art MORL algorithms on this benchmark reveals limited generalization capabilities, suggesting significant room for improvement.
arXiv Detail & Related papers (2025-03-02T08:50:14Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind.
This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines.
arXiv Detail & Related papers (2024-01-23T18:59:43Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - A Multiobjective Reinforcement Learning Framework for Microgrid Energy Management [0.0]
microgrids (MGs) provide a promising solution for decarbonizing and decentralizing the power grid.<n>However, MG operations often involve considering multiple objectives that represent the interests of different stakeholders.<n>We propose a novel multi-objective reinforcement learning framework that explores the high-dimensional objective space and uncovers the tradeoffs between conflicting objectives.
arXiv Detail & Related papers (2023-07-17T17:52:57Z) - Dynamics-Adaptive Continual Reinforcement Learning via Progressive
Contextualization [29.61829620717385]
Key challenge of continual reinforcement learning (CRL) in dynamic environments is to promptly adapt the RL agent's behavior as the environment changes over its lifetime.
DaCoRL learns a context-conditioned policy using progressive contextualization.
DaCoRL features consistent superiority over existing methods in terms of the stability, overall performance and generalization ability.
arXiv Detail & Related papers (2022-09-01T10:26:58Z) - Variational Empowerment as Representation Learning for Goal-Based
Reinforcement Learning [114.07623388322048]
We discuss how the standard goal-conditioned RL (GCRL) is encapsulated by the objective variational empowerment.
Our work lays a novel foundation from which to evaluate, analyze, and develop representation learning techniques in goal-based RL.
arXiv Detail & Related papers (2021-06-02T18:12:26Z) - Policy Information Capacity: Information-Theoretic Measure for Task
Complexity in Deep Reinforcement Learning [83.66080019570461]
We propose two environment-agnostic, algorithm-agnostic quantitative metrics for task difficulty.
We show that these metrics have higher correlations with normalized task solvability scores than a variety of alternatives.
These metrics can also be used for fast and compute-efficient optimizations of key design parameters.
arXiv Detail & Related papers (2021-03-23T17:49:50Z) - Learning Robust State Abstractions for Hidden-Parameter Block MDPs [55.31018404591743]
We leverage ideas of common structure from the HiP-MDP setting to enable robust state abstractions inspired by Block MDPs.
We derive instantiations of this new framework for both multi-task reinforcement learning (MTRL) and meta-reinforcement learning (Meta-RL) settings.
arXiv Detail & Related papers (2020-07-14T17:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.