KAT-V1: Kwai-AutoThink Technical Report
- URL: http://arxiv.org/abs/2507.08297v3
- Date: Mon, 21 Jul 2025 10:37:40 GMT
- Title: KAT-V1: Kwai-AutoThink Technical Report
- Authors: Zizheng Zhan, Ken Deng, Huaixi Tang, Wen Xiang, Kun Wu, Weihao Li, Wenqiang Zhu, Jingxuan Xu, Lecheng Huang, Zongxian Feng, Shaojie Wang, Shangpeng Yan, Xuxing Chen, Jiaheng Liu, Zhongyuan Peng, Zuchen Gao, Haoyang Huang, Xiaojiang Zhang, Jinghui Wang, Zheng Lin, Mengtong Li, Huiming Wang, Ziqi Zhan, Yanan Wu, Yuanxing Zhang, Jian Yang, Guang Chen, Haotian Zhang, Bin Chen, Bing Yu,
- Abstract summary: We present Kwaipilot-AutoThink (KAT), an open-source 40B large language model developed to address the overthinking problem in reasoning-intensive tasks.<n>KAT dynamically switches between reasoning and non-reasoning modes based on task complexity.<n>We also propose Step-SRPO, a reinforcement learning algorithm that incorporates intermediate supervision into the GRPO framework.
- Score: 50.84483585850113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Kwaipilot-AutoThink (KAT), an open-source 40B large language model developed to address the overthinking problem in reasoning-intensive tasks, where an automatic thinking training paradigm is proposed to dynamically switch between reasoning and non-reasoning modes based on task complexity. Specifically, first, we construct the dual-regime dataset based on a novel tagging pipeline and a multi-agent synthesis strategy, and then we apply Multi-Token Prediction (MTP)-enhanced knowledge distillation, enabling efficient and fine-grained reasoning transfer with minimal pretraining cost. Besides, we implement a cold-start initialization strategy that introduces mode-selection priors using majority-vote signals and intent-aware prompting. Finally, we propose Step-SRPO, a reinforcement learning algorithm that incorporates intermediate supervision into the GRPO framework, offering structured guidance over both reasoning-mode selection and response accuracy. Extensive experiments across multiple benchmarks demonstrate that KAT consistently matches or even outperforms current state-of-the-art models, including DeepSeek-R1-0528 and Qwen3-235B-A22B, across a wide range of reasoning-intensive tasks while reducing token usage. Notably, KAT outperforms all open-source models and even surpasses o3-mini on the leakage-controlled LiveCodeBench Pro. Beyond academic evaluation, KAT has been successfully deployed in Kwaipilot (i.e., Kuaishou's internal coding assistant), where it improves real-world development workflows with high accuracy, efficiency, and controllable reasoning behaviors. Moreover, we are actively training a 200B Mixture-of-Experts (MoE) model with 40B active parameters, and early results already show significant gains, further demonstrating the scalability of the AutoThink paradigm.
Related papers
- Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - Walk Before You Run! Concise LLM Reasoning via Reinforcement Learning [10.255235456427037]
We propose a simple yet effective two-stage reinforcement learning framework for achieving concise reasoning in Large Language Models (LLMs)<n>The first stage, using more training steps, aims to incentivize the model's reasoning capabilities via Group Relative Policy Optimization.<n>The second stage, using fewer training steps, explicitly enforces conciseness and improves efficiency via Length-aware Group Relative Policy Optimization.
arXiv Detail & Related papers (2025-05-27T13:29:51Z) - Self-Route: Automatic Mode Switching via Capability Estimation for Efficient Reasoning [36.470695895695044]
Self-Route is a dynamic reasoning framework that automatically selects between general and reasoning modes.<n>We show that Self-Route achieves comparable accuracy to reasoning models while reducing token consumption by 30-55%.
arXiv Detail & Related papers (2025-05-27T03:18:31Z) - LARES: Latent Reasoning for Sequential Recommendation [96.26996622771593]
We present LARES, a novel and scalable LAtent REasoning framework for Sequential recommendation.<n>Our proposed approach employs a recurrent architecture that allows flexible expansion of reasoning depth without increasing parameter complexity.<n>Our framework exhibits seamless compatibility with existing advanced models, further improving their recommendation performance.
arXiv Detail & Related papers (2025-05-22T16:22:54Z) - Activation-Guided Consensus Merging for Large Language Models [25.68958388022476]
We present textbfActivation-Guided textbfConsensus textbfMerging (textbfACM), a plug-and-play merging framework that determines layer-specific merging coefficients.<n>Experiments on Long-to-Short (L2S) and general merging tasks demonstrate that ACM consistently outperforms all baseline methods.
arXiv Detail & Related papers (2025-05-20T07:04:01Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development.<n>We present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents.<n>We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2.
arXiv Detail & Related papers (2025-03-18T14:02:59Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [89.50068130832635]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation MLLMs by multimodal knowledge.<n>We propose Chain-of-Description for step-by-step visual understanding and integrate structured Chain-of-Thought (CoT) reasoning to support in-depth multimodal reasoning.<n>Experiments demonstrate SIcog's effectiveness in developing MLLMs with enhanced multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.<n>We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
arXiv Detail & Related papers (2024-10-10T17:14:36Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.