Think Beyond Size: Adaptive Prompting for More Effective Reasoning
- URL: http://arxiv.org/abs/2410.08130v2
- Date: Fri, 29 Nov 2024 16:18:29 GMT
- Title: Think Beyond Size: Adaptive Prompting for More Effective Reasoning
- Authors: Kamesh R,
- Abstract summary: We introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.<n>Results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArithm), logical reasoning and commonsense tasks.<n>Our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained large language models (LLMs) are increasingly utilized across a wide range of natural language processing (NLP) tasks due to their impressive capabilities as few-shot learners. Recent techniques, such as chain-of-thought (CoT) prompting, have significantly advanced multi-step reasoning by introducing step-by-step decomposition, achieving state-of-the-art results on complex reasoning benchmarks. However, these approaches often rely on static prompting templates that do not adapt to task complexity or errors during the reasoning process. In this work, we introduce Adaptive Prompting, a dynamic and iterative framework designed to enhance reasoning by incorporating real-time adjustments to prompt structures and validation mechanisms.Experimental results demonstrate that Adaptive Prompting significantly improves performance on diverse reasoning benchmarks, including arithmetic reasoning (GSM8K, MultiArith), logical reasoning and commonsense tasks, achieving substantial accuracy gains compared to static prompting baselines. By integrating guided prompts, intermediate validation, and self-corrective steps, our approach enables smaller models to achieve competitive performance with larger counterparts, such as GPT-4, while maintaining computational efficiency. The framework achieves this without requiring fine-tuning or task-specific training data, highlighting the untapped potential of iterative reasoning methods.
Related papers
- Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.
Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Achieving More with Less: Additive Prompt Tuning for Rehearsal-Free Class-Incremental Learning [76.32953653161417]
Class-incremental learning enables models to learn new classes progressively while preserving knowledge of previously learned ones.
Recent advances in this field have shifted towards parameter-efficient fine-tuning techniques.
We present a novel prompt-based approach that addresses the limitation of current approaches.
arXiv Detail & Related papers (2025-03-11T02:27:37Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
We introduce Unsupervised Prefix Fine-Tuning (UPFT) to enhance large language models' reasoning efficiency.
UPFT removes the need for labeled data or exhaustive sampling.
Experiments show that UPFT matches the performance of supervised methods.
arXiv Detail & Related papers (2025-03-04T18:56:03Z) - PEA: Enhancing LLM Performance on Computational-Reasoning Tasks [21.13926189404758]
This study introduces a formal approach to describe and solve a class of important reasoning tasks termed computational reasoning problems.
The framework decomposes these problems into predicate and enumeration components, using LLMs to synthesize programs based on specified predicates, enumeration, and aggregation rules.
Empirical evaluation reveals that PEA substantially enhances the performance of underlying models on benchmark computational problems, yielding an average accuracy improvement of approximately $50%$, coupled with increased efficiency.
arXiv Detail & Related papers (2025-02-16T00:27:05Z) - Eliciting Causal Abilities in Large Language Models for Reasoning Tasks [14.512834333917414]
We introduce the Self-Causal Instruction Enhancement (SCIE) method, which enables LLMs to generate high-quality, low-quantity observational data.
In SCIE, the instructions are treated as the treatment, and textual features are used to process natural language.
Our method effectively generates instructions that enhance reasoning performance with reduced training cost of prompts.
arXiv Detail & Related papers (2024-12-19T17:03:02Z) - Evolutionary Pre-Prompt Optimization for Mathematical Reasoning [45.461506988071534]
This paper explores the optimization of example selection for designing effective chain-of-thought pre-prompts.
It shows that the choice of the algorithm, typically in favor of comparison-based methods such as evolutionary computation, significantly enhances efficacy and feasibility.
arXiv Detail & Related papers (2024-12-05T16:12:06Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
Large pretrained models are showing increasingly better performance in reasoning and planning tasks.
We evaluate their ability to produce decision-making policies, either directly, by generating actions, or indirectly.
In environments with unfamiliar dynamics, we explore how fine-tuning LLMs with synthetic data can significantly improve their reward modeling capabilities.
arXiv Detail & Related papers (2024-10-08T03:12:57Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
Large language models (LLMs) struggle with consistent and accurate reasoning.
LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors.
We propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification.
arXiv Detail & Related papers (2024-10-05T05:21:48Z) - Enhancing Short-Text Topic Modeling with LLM-Driven Context Expansion and Prefix-Tuned VAEs [25.915607750636333]
We propose a novel approach that leverages large language models (LLMs) to extend short texts into more detailed sequences before applying topic modeling.
Our method significantly improves short-text topic modeling performance, as demonstrated by extensive experiments on real-world datasets with extreme data sparsity.
arXiv Detail & Related papers (2024-10-04T01:28:56Z) - Derailer-Rerailer: Adaptive Verification for Efficient and Reliable Language Model Reasoning [11.765298236504155]
Derailer-Rerailer is a novel framework that balances reasoning accuracy and computational efficiency.
Our framework achieves significant accuracy improvements (8-11% across various reasoning tasks) while maintaining 2-3 times better efficiency than existing verification methods.
arXiv Detail & Related papers (2024-08-25T21:20:17Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
We present a novel method of further improving performance by requiring models to compare multiple reasoning chains.
We find that instruction tuning on DCoT datasets boosts the performance of even smaller, and therefore more accessible, language models.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Expressive and Generalizable Low-rank Adaptation for Large Models via Slow Cascaded Learning [55.5715496559514]
LoRA Slow Cascade Learning (LoRASC) is an innovative technique designed to enhance LoRA's expressiveness and generalization capabilities.
Our approach augments expressiveness through a cascaded learning strategy that enables a mixture-of-low-rank adaptation, thereby increasing the model's ability to capture complex patterns.
arXiv Detail & Related papers (2024-07-01T17:28:59Z) - E-Bench: Towards Evaluating the Ease-of-Use of Large Language Models [29.763745375790933]
Large language models (LLMs) are sensitive to prompts, and another synonymous expression or a typo may lead to unexpected results for the model.
We evaluate the ease-of-use of LLMs and construct E-Bench, simulating the actual situation of human use.
arXiv Detail & Related papers (2024-06-16T14:08:30Z) - Improving the Robustness of Transformer-based Large Language Models with
Dynamic Attention [43.95101492654236]
Transformer-based models, such as BERT and GPT, have been widely adopted in natural language processing (NLP)
Recent studies show their vulnerability to textual adversarial attacks where the model's output can be misled by intentionally manipulating the text inputs.
We propose a novel method called dynamic attention, tailored for the transformer architecture, to enhance the inherent robustness of the model itself against various adversarial attacks.
arXiv Detail & Related papers (2023-11-29T07:09:13Z) - Variational Temporal IRT: Fast, Accurate, and Explainable Inference of
Dynamic Learner Proficiency [5.715502630272047]
We propose Variational Temporal IRT (VTIRT) for fast and accurate inference of learner proficiency.
VTIRT offers orders of magnitude speedup in inference runtime while still providing accurate inference.
When applied to 9 real student datasets, VTIRT consistently yields improvements in predicting future learner performance.
arXiv Detail & Related papers (2023-11-14T23:36:39Z) - Evolve Smoothly, Fit Consistently: Learning Smooth Latent Dynamics For
Advection-Dominated Systems [14.553972457854517]
We present a data-driven, space-time continuous framework to learn surrogatemodels for complex physical systems.
We leverage the expressive power of the network and aspecially designed consistency-inducing regularization to obtain latent trajectories that are both low-dimensional and smooth.
arXiv Detail & Related papers (2023-01-25T03:06:03Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Rationale-Augmented Ensembles in Language Models [53.45015291520658]
We reconsider rationale-augmented prompting for few-shot in-context learning.
We identify rationale sampling in the output space as the key component to robustly improve performance.
We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches.
arXiv Detail & Related papers (2022-07-02T06:20:57Z) - Quadratic mutual information regularization in real-time deep CNN models [51.66271681532262]
Regularization method motivated by the Quadratic Mutual Information is proposed.
Experiments on various binary classification problems are performed, indicating the effectiveness of the proposed models.
arXiv Detail & Related papers (2021-08-26T13:14:24Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
We introduce an automated, formal, counterexample-based approach to synthesise Barrier Certificates (BC)
The approach is underpinned by an inductive framework, which manipulates a candidate BC structured as a neural network, and a sound verifier, which either certifies the candidate's validity or generates counter-examples.
The outcomes show that we can synthesise sound BCs up to two orders of magnitude faster, with in particular a stark speedup on the verification engine.
arXiv Detail & Related papers (2020-07-07T07:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.