論文の概要: MK2 at PBIG Competition: A Prompt Generation Solution
- arxiv url: http://arxiv.org/abs/2507.08335v1
- Date: Fri, 11 Jul 2025 06:27:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.256942
- Title: MK2 at PBIG Competition: A Prompt Generation Solution
- Title(参考訳): PBIGコンペティションのMK2: プロンプト生成ソリューション
- Authors: Yuzheng Xu, Tosho Hirasawa, Seiya Kawano, Shota Kato, Tadashi Kozuno,
- Abstract要約: 実際の特許を3年以内に実現可能な製品アイデアに変換するシステムを提案する。
3つのドメインに2つの評価器タイプ、6つの基準でMK2は自動リーダーボードを上回り、36回のテストで25勝した。
物質化学トラックのみがラギングされ、より深い領域の接地の必要性が示唆された。
- 参考スコア(独自算出の注目度): 8.244920982385752
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Patent-Based Idea Generation task asks systems to turn real patents into product ideas viable within three years. We propose MK2, a prompt-centric pipeline: Gemini 2.5 drafts and iteratively edits a prompt, grafting useful fragments from weaker outputs; GPT-4.1 then uses this prompt to create one idea per patent, and an Elo loop judged by Qwen3-8B selects the best prompt-all without extra training data. Across three domains, two evaluator types, and six criteria, MK2 topped the automatic leaderboard and won 25 of 36 tests. Only the materials-chemistry track lagged, indicating the need for deeper domain grounding; yet, the results show that lightweight prompt engineering has already delivered competitive, commercially relevant ideation from patents.
- Abstract(参考訳): 特許に基づく理想生成タスクは、システムに対して、実際の特許を3年以内に実行可能な製品アイデアに変換するよう求めている。
我々は、プロンプト中心のパイプラインであるMK2を提案する: Gemini 2.5のドラフトと反復的にプロンプトを編集し、弱い出力から有用なフラグメントを移植する。
3つのドメインに2つの評価器タイプ、6つの基準でMK2は自動リーダーボードを上回り、36回のテストで25勝した。
物質化学のトラックだけは、より深いドメイン基盤の必要性を示しているが、しかしながら、軽量なプロンプトエンジニアリングは、すでに競争力があり、商業的に関連するアイデアを特許から提供している。
関連論文リスト
- AutoPatent: A Multi-Agent Framework for Automatic Patent Generation [16.862811929856313]
我々はDraft2Patentと呼ばれる新しい実用的なタスクとそれに対応するD2Pベンチマークを導入し、初期ドラフトに基づいて17Kトークンを平均化する完全長の特許を生成するためにLarge Language Modelsに挑戦する。
提案するマルチエージェントフレームワークであるAutoPatentは,LPMベースのプランナーエージェント,ライターエージェント,検査エージェントをPGTreeとRRAGで組み合わせて,長文かつ複雑かつ高品質な特許文書を生成する。
論文 参考訳(メタデータ) (2024-12-13T02:27:34Z) - Pap2Pat: Benchmarking Outline-Guided Long-Text Patent Generation with Patent-Paper Pairs [13.242188189150987]
PAP2PATは、同じ発明を記述した1.8kの特許と紙のペアからなる特許草案作成のためのオープンベンチマークである。
PAP2PATと人体ケーススタディを用いて評価したところ、LCMは紙からの情報を有効に活用できるが、それでも必要な詳細情報を提供するのに苦労している。
論文 参考訳(メタデータ) (2024-10-09T15:52:48Z) - Networks of Networks: Complexity Class Principles Applied to Compound AI Systems Design [63.24275274981911]
多くの言語モデル推論コールからなる複合AIシステムは、ますます採用されている。
本研究では,提案した回答の生成と正当性検証の区別を中心に,ネットワークネットワーク(NoN)と呼ばれるシステムを構築した。
我々は,Kジェネレータを備えた検証器ベースの判定器NoNを導入し,"Best-of-K"あるいは"judge-based"複合AIシステムのインスタンス化を行う。
論文 参考訳(メタデータ) (2024-07-23T20:40:37Z) - Not All Prompts Are Made Equal: Prompt-based Pruning of Text-to-Image Diffusion Models [59.16287352266203]
本稿では,テキスト・ツー・イメージ(T2I)モデルのための新しいプロンプトベースのプルーニング手法であるAdaptive Prompt-Tailored Pruning (APTP)を紹介する。
APTPは入力テキストプロンプトに必要な容量を決定することを学び、それをアーキテクチャコードにルーティングする。
APTPはFID、CLIP、CMMDスコアの点でシングルモデルプルーニングベースラインを上回っている。
論文 参考訳(メタデータ) (2024-06-17T19:22:04Z) - PaECTER: Patent-level Representation Learning using Citation-informed
Transformers [0.16785092703248325]
PaECTERは、特許に特有のオープンソースドキュメントレベルのエンコーダである。
我々は,特許文書の数値表現を生成するために,受験者による引用情報付き特許用BERTを微調整する。
PaECTERは、特許ドメインで使用されている現在の最先端モデルよりも類似性タスクが優れている。
論文 参考訳(メタデータ) (2024-02-29T18:09:03Z) - Unveiling Black-boxes: Explainable Deep Learning Models for Patent
Classification [48.5140223214582]
深部不透明ニューラルネットワーク(DNN)を利用した多ラベル特許分類のための最先端手法
レイヤワイド関連伝搬(Layer-wise Relevance propagation, LRP)を導入し, 特許の詳細な分類手法を提案する。
関連性スコアを考慮し、予測された特許クラスに関連する単語を視覚化して説明を生成する。
論文 参考訳(メタデータ) (2023-10-31T14:11:37Z) - The Harvard USPTO Patent Dataset: A Large-Scale, Well-Structured, and
Multi-Purpose Corpus of Patent Applications [8.110699646062384]
ハーバードUSPTO特許データセット(HUPD)について紹介する。
450万件以上の特許文書があり、HUPDは同等のコーパスの2倍から3倍の大きさだ。
各アプリケーションのメタデータとすべてのテキストフィールドを提供することで、このデータセットは研究者が新しいNLPタスクセットを実行することを可能にする。
論文 参考訳(メタデータ) (2022-07-08T17:57:15Z) - Speculative Decoding: Exploiting Speculative Execution for Accelerating
Seq2seq Generation [80.2267931231335]
本稿では,自己回帰(AR)デコーディングを高速化する投機的実行のアイデアを活用するための投機的デコーディング(SpecDec)を提案する。
SpecDecには2つのイノベーションがある。Spec-Drafter - 効率的なドラフトのために特別に最適化された独立モデル、Spec-Verification - ドラフトされたトークンを効率的に検証するための信頼性の高い方法である。
論文 参考訳(メタデータ) (2022-03-30T17:27:09Z) - Automated Single-Label Patent Classification using Ensemble Classifiers [0.0]
特許文書の異なる部分で訓練されたアンサンブル分類器の革新的な方法を提案する。
我々の知る限りでは、特許分類問題に対してアンサンブル法が提案されたのはこれが初めてである。
論文 参考訳(メタデータ) (2022-03-03T08:47:15Z) - Answering Complex Open-Domain Questions with Multi-Hop Dense Retrieval [117.07047313964773]
複雑なオープンドメインの質問に答えるために, 単純で効率的なマルチホップ高密度検索手法を提案する。
本手法では,文書間ハイパーリンクやアノテートされたエンティティマーカーなど,コーパス固有の情報へのアクセスは不要である。
提案システムでは,HotpotQA上でのベストパブリッシュ精度と,推論時の10倍の速度で,より優れた効率・精度のトレードオフも実現している。
論文 参考訳(メタデータ) (2020-09-27T06:12:29Z) - Efficient Intent Detection with Dual Sentence Encoders [53.16532285820849]
本稿では,USE や ConveRT などの事前訓練された二重文エンコーダによるインテント検出手法を提案する。
提案するインテント検出器の有用性と適用性を示し,完全なBERT-Largeモデルに基づくインテント検出器よりも優れた性能を示す。
コードだけでなく、新しい挑戦的な単一ドメイン意図検出データセットもリリースしています。
論文 参考訳(メタデータ) (2020-03-10T15:33:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。