Beyond N-Grams: Rethinking Evaluation Metrics and Strategies for Multilingual Abstractive Summarization
- URL: http://arxiv.org/abs/2507.08342v1
- Date: Fri, 11 Jul 2025 06:44:52 GMT
- Title: Beyond N-Grams: Rethinking Evaluation Metrics and Strategies for Multilingual Abstractive Summarization
- Authors: Itai Mondshine, Tzuf Paz-Argaman, Reut Tsarfaty,
- Abstract summary: We assess evaluation metrics for generation both n-gram-based and neural based to evaluate their effectiveness across languages and tasks.<n>Our findings highlight the sensitivity of evaluation metrics to the language type.
- Score: 13.458891794688551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic n-gram based metrics such as ROUGE are widely used for evaluating generative tasks such as summarization. While these metrics are considered indicative (even if imperfect) of human evaluation for English, their suitability for other languages remains unclear. To address this, we systematically assess evaluation metrics for generation both n-gram-based and neural based to evaluate their effectiveness across languages and tasks. Specifically, we design a large-scale evaluation suite across eight languages from four typological families: agglutinative, isolating, low-fusional, and high-fusional, spanning both low- and high-resource settings, to analyze their correlation with human judgments. Our findings highlight the sensitivity of evaluation metrics to the language type. For example, in fusional languages, n-gram-based metrics show lower correlation with human assessments compared to isolating and agglutinative languages. We also demonstrate that proper tokenization can significantly mitigate this issue for morphologically rich fusional languages, sometimes even reversing negative trends. Additionally, we show that neural-based metrics specifically trained for evaluation, such as COMET, consistently outperform other neural metrics and better correlate with human judgments in low-resource languages. Overall, our analysis highlights the limitations of n-gram metrics for fusional languages and advocates for greater investment in neural-based metrics trained for evaluation tasks.
Related papers
- Mechanistic Understanding and Mitigation of Language Confusion in English-Centric Large Language Models [49.09746599881631]
We present the first mechanistic interpretability study of language confusion.<n>We show that confusion points (CPs) are central to this phenomenon.<n>We show that editing a small set of critical neurons, identified via comparative analysis with multilingual-tuned models, substantially mitigates confusion.
arXiv Detail & Related papers (2025-05-22T11:29:17Z) - FUSE : A Ridge and Random Forest-Based Metric for Evaluating MT in Indigenous Languages [2.377892000761193]
This paper presents the winning submission of the RaaVa team to the Americas 2025 Shared Task 3 on Automatic Evaluation Metrics for Machine Translation.<n>We introduce Feature-Union Scorer (FUSE) for Evaluation, FUSE integrates Ridge regression and Gradient Boosting to model translation quality.<n>Results show that FUSE consistently achieves higher Pearson and Spearman correlations with human judgments.
arXiv Detail & Related papers (2025-03-28T06:58:55Z) - How Does Quantization Affect Multilingual LLMs? [50.867324914368524]
Quantization techniques are widely used to improve inference speed and deployment of large language models.
We conduct a thorough analysis of quantized multilingual LLMs, focusing on performance across languages and at varying scales.
arXiv Detail & Related papers (2024-07-03T15:39:40Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
We introduce Holmes, a new benchmark designed to assess language models (LMs) linguistic competence.
We use computation-based probing to examine LMs' internal representations regarding distinct linguistic phenomena.
As a result, we meet recent calls to disentangle LMs' linguistic competence from other cognitive abilities.
arXiv Detail & Related papers (2024-04-29T17:58:36Z) - Unsupervised Approach to Evaluate Sentence-Level Fluency: Do We Really
Need Reference? [3.2528685897001455]
This paper adapts an existing unsupervised technique for measuring text fluency without the need for any reference.
Our approach leverages various word embeddings and trains language models using Recurrent Neural Network (RNN) architectures.
To assess the performance of the models, we conduct a comparative analysis across 10 Indic languages.
arXiv Detail & Related papers (2023-12-03T20:09:23Z) - BLEU Meets COMET: Combining Lexical and Neural Metrics Towards Robust
Machine Translation Evaluation [12.407789866525079]
We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena.
We show that by using additional information during training, such as sentence-level features and word-level tags, the trained metrics improve their capability to penalize translations with specific troublesome phenomena.
arXiv Detail & Related papers (2023-05-30T15:50:46Z) - ICE-Score: Instructing Large Language Models to Evaluate Code [7.556444391696562]
We propose textttICE-Score, a new evaluation metric via instructing large language models for code assessments.
Our metric addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences.
Our results demonstrate that our metric surpasses state-of-the-art metrics for code generation.
arXiv Detail & Related papers (2023-04-27T16:38:17Z) - On the Usefulness of Embeddings, Clusters and Strings for Text Generator
Evaluation [86.19634542434711]
Mauve measures an information-theoretic divergence between two probability distributions over strings.
We show that Mauve was right for the wrong reasons, and that its newly proposed divergence is not necessary for its high performance.
We conclude that -- by encoding syntactic- and coherence-level features of text, while ignoring surface-level features -- such cluster-based substitutes to string distributions may simply be better for evaluating state-of-the-art language generators.
arXiv Detail & Related papers (2022-05-31T17:58:49Z) - Discrete representations in neural models of spoken language [56.29049879393466]
We compare the merits of four commonly used metrics in the context of weakly supervised models of spoken language.
We find that the different evaluation metrics can give inconsistent results.
arXiv Detail & Related papers (2021-05-12T11:02:02Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
A few popular metrics remain as the de facto metrics to evaluate tasks such as image captioning and machine translation.
This is partly due to ease of use, and partly because researchers expect to see them and know how to interpret them.
In this paper, we urge the community for more careful consideration of how they automatically evaluate their models.
arXiv Detail & Related papers (2020-10-26T13:57:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.