Why this and not that? A Logic-based Framework for Contrastive Explanations
- URL: http://arxiv.org/abs/2507.08454v1
- Date: Fri, 11 Jul 2025 09:55:04 GMT
- Title: Why this and not that? A Logic-based Framework for Contrastive Explanations
- Authors: Tobias Geibinger, Reijo Jaakkola, Antti Kuusisto, Xinghan Liu, Miikka Vilander,
- Abstract summary: We define several canonical problems related to contrastive explanations, each answering a question of the form ''Why P but not Q?''<n>The problems compute causes for both P and Q, explicitly comparing their differences.<n>We show, inter alia, that our framework captures a cardinality-minimal version of existing contrastive explanations in the literature.
- Score: 4.3871352596331255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We define several canonical problems related to contrastive explanations, each answering a question of the form ''Why P but not Q?''. The problems compute causes for both P and Q, explicitly comparing their differences. We investigate the basic properties of our definitions in the setting of propositional logic. We show, inter alia, that our framework captures a cardinality-minimal version of existing contrastive explanations in the literature. Furthermore, we provide an extensive analysis of the computational complexities of the problems. We also implement the problems for CNF-formulas using answer set programming and present several examples demonstrating how they work in practice.
Related papers
- Complexity of Faceted Explanations in Propositional Abduction [6.674752821781092]
Abductive reasoning is a popular non-monotonic paradigm that aims to explain observed symptoms and manifestations.<n>In propositional abduction, we focus on specifying knowledge by a propositional formula.<n>We consider reasoning between decisions and counting, allowing us to understand explanations better.
arXiv Detail & Related papers (2025-07-20T13:50:26Z) - Dialogue-based Explanations for Logical Reasoning using Structured Argumentation [0.06138671548064355]
We identify structural weaknesses of the state-of-the-art and propose a generic argumentation-based approach to address these problems.<n>Our work provides dialogue models as dialectic-proof procedures to compute and explain a query answer.<n>This allows us to construct dialectical proof trees as explanations, which are more expressive and arguably more intuitive than existing explanation formalisms.
arXiv Detail & Related papers (2025-02-16T22:26:18Z) - GRS-QA -- Graph Reasoning-Structured Question Answering Dataset [50.223851616680754]
We introduce the Graph Reasoning-Structured Question Answering dataset (GRS-QA), which includes both semantic contexts and reasoning structures for QA pairs.
Unlike existing M-QA datasets, GRS-QA explicitly captures intricate reasoning pathways by constructing reasoning graphs.
Our empirical analysis reveals that LLMs perform differently when handling questions with varying reasoning structures.
arXiv Detail & Related papers (2024-11-01T05:14:03Z) - Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation [19.799266797193344]
Argumentation-based systems often lack explainability while supporting decision-making processes.
Counterfactual and semifactual explanations are interpretability techniques.
We show that counterfactual and semifactual queries can be encoded in weak-constrained Argumentation Framework.
arXiv Detail & Related papers (2024-05-07T07:27:27Z) - Explanation Selection Using Unlabeled Data for Chain-of-Thought
Prompting [80.9896041501715]
Explanations that have not been "tuned" for a task, such as off-the-shelf explanations written by nonexperts, may lead to mediocre performance.
This paper tackles the problem of how to optimize explanation-infused prompts in a blackbox fashion.
arXiv Detail & Related papers (2023-02-09T18:02:34Z) - Explainability via Short Formulas: the Case of Propositional Logic with
Implementation [2.583686260808494]
We give a number of related definitions of explainability in a very general setting.
Our main interest is the so-called special explanation problem which aims to explain the truth value of an input formula in an input model.
arXiv Detail & Related papers (2022-09-03T11:47:25Z) - Reasoning over Logically Interacted Conditions for Question Answering [113.9231035680578]
We study a more challenging task where answers are constrained by a list of conditions that logically interact.
We propose a new model, TReasoner, for this challenging reasoning task.
TReasoner achieves state-of-the-art performance on two benchmark conditional QA datasets.
arXiv Detail & Related papers (2022-05-25T16:41:39Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
We present an approach that reasons about complex questions by decomposing them to simpler subquestions.
We derive the final answer according to instructions in a predefined reasoning template.
We show that our approach is competitive with the state-of-the-art while being interpretable and requires little supervision.
arXiv Detail & Related papers (2021-04-05T18:56:56Z) - ExplanationLP: Abductive Reasoning for Explainable Science Question
Answering [4.726777092009554]
This paper frames question answering as an abductive reasoning problem.
We construct plausible explanations for each choice and then selecting the candidate with the best explanation as the final answer.
Our system, ExplanationLP, elicits explanations by constructing a weighted graph of relevant facts for each candidate answer.
arXiv Detail & Related papers (2020-10-25T14:49:24Z) - From Checking to Inference: Actual Causality Computations as
Optimization Problems [79.87179017975235]
We present a novel approach to formulate different notions of causal reasoning, over binary acyclic models, as optimization problems.
We show that both notions are efficiently automated. Using models with more than $8000$ variables, checking is computed in a matter of seconds, with MaxSAT outperforming ILP in many cases.
arXiv Detail & Related papers (2020-06-05T10:56:52Z) - VQA-LOL: Visual Question Answering under the Lens of Logic [58.30291671877342]
We investigate whether visual question answering systems trained to answer a question about an image, are able to answer the logical composition of multiple such questions.
We construct an augmentation of the VQA dataset as a benchmark, with questions containing logical compositions and linguistic transformations.
We propose our Lens of Logic (LOL) model which uses question-attention and logic-attention to understand logical connectives in the question, and a novel Fr'echet-Compatibility Loss.
arXiv Detail & Related papers (2020-02-19T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.