論文の概要: Diagnosing Failures in Large Language Models' Answers: Integrating Error Attribution into Evaluation Framework
- arxiv url: http://arxiv.org/abs/2507.08459v1
- Date: Fri, 11 Jul 2025 10:02:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.317228
- Title: Diagnosing Failures in Large Language Models' Answers: Integrating Error Attribution into Evaluation Framework
- Title(参考訳): 大規模言語モデルの解答における失敗の診断--評価フレームワークへの誤り属性の統合
- Authors: Zishan Xu, Shuyi Xie, Qingsong Lv, Shupei Xiao, Linlin Song, Sui Wenjuan, Fan Lin,
- Abstract要約: 詳細な分析を容易にするため、6つのプライマリカテゴリと15のセカンダリカテゴリを備えたミサトリビューションフレームワークを構築した。
本稿では,誤り帰属に特化して設計されたデータセットであるAttriDataについて述べる。
また,AttriData上での微調整モデルであるMisAttributionLLMを提案する。
- 参考スコア(独自算出の注目度): 2.0364208478403554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the widespread application of Large Language Models (LLMs) in various tasks, the mainstream LLM platforms generate massive user-model interactions daily. In order to efficiently analyze the performance of models and diagnose failures in their answers, it is essential to develop an automated framework to systematically categorize and attribute errors. However, existing evaluation models lack error attribution capability. In this work, we establish a comprehensive Misattribution Framework with 6 primary and 15 secondary categories to facilitate in-depth analysis. Based on this framework, we present AttriData, a dataset specifically designed for error attribution, encompassing misattribution, along with the corresponding scores and feedback. We also propose MisAttributionLLM, a fine-tuned model on AttriData, which is the first general-purpose judge model capable of simultaneously generating score, misattribution, and feedback. Extensive experiments and analyses are conducted to confirm the effectiveness and robustness of our proposed method.
- Abstract(参考訳): 様々なタスクにLarge Language Models (LLM) が広く適用されているため、主要なLLMプラットフォームは毎日大量のユーザモデルインタラクションを生成する。
モデルの性能を効率的に分析し,その解答の失敗を診断するためには,エラーを体系的に分類し,属性付けする自動フレームワークを開発することが不可欠である。
しかし、既存の評価モデルには誤り帰属能力がない。
本研究では,6つのプライマリカテゴリと15のセカンダリカテゴリを備えた総合的なMisattribution Frameworkを構築し,詳細な分析を行う。
このフレームワークをベースとして,誤り帰属に特化して設計されたデータセットであるAttriDataと,それに対応するスコアとフィードバックについて述べる。
また,AttriData上での微調整モデルであるMisAttributionLLMを提案する。
提案手法の有効性とロバスト性を確認するため, 大規模実験と解析を行った。
関連論文リスト
- CLEAR: Error Analysis via LLM-as-a-Judge Made Easy [9.285203198113917]
LLMに基づくエラー解析のための対話型オープンソースパッケージであるCLEARを紹介する。
CLEARはまずインスタンスごとのテキストフィードバックを生成し、次に一連のシステムレベルのエラー問題を生成し、それぞれの問題の有効性を定量化する。
当社のパッケージはユーザに対して,集計視覚化による包括的なエラー解析を可能にする,インタラクティブなダッシュボードも提供しています。
論文 参考訳(メタデータ) (2025-07-24T13:15:21Z) - Benchmarking community drug response prediction models: datasets, models, tools, and metrics for cross-dataset generalization analysis [36.689210473887904]
本稿では,ディープラーニング(DL)モデルと機械学習(ML)モデルにおけるデータセット間予測の一般化を評価するためのベンチマークフレームワークを提案する。
絶対的なパフォーマンス(データセット間での予測精度など)と相対的なパフォーマンス(例えば、データセット内の結果と比較してパフォーマンス低下)の両方を定量化します。
本結果は,厳密な一般化評価の重要性を浮き彫りにして,未知のデータセット上でモデルをテストする場合の大幅な性能低下を明らかにした。
論文 参考訳(メタデータ) (2025-03-18T15:40:18Z) - FACT-AUDIT: An Adaptive Multi-Agent Framework for Dynamic Fact-Checking Evaluation of Large Language Models [79.41859481668618]
大規模言語モデル(LLM)はファクトチェック研究を大幅に進歩させた。
既存のファクトチェック評価手法は静的データセットと分類基準に依存している。
本稿では, LLMのファクトチェック機能を適応的かつ動的に評価するエージェント駆動型フレームワークであるFACT-AUDITを紹介する。
論文 参考訳(メタデータ) (2025-02-25T07:44:22Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - DECIDER: Leveraging Foundation Model Priors for Improved Model Failure Detection and Explanation [18.77296551727931]
本稿では,大規模言語モデル (LLM) と視覚言語モデル (VLM) の先行情報を利用した画像モデルの故障検出手法であるDECIDERを提案する。
DECIDERは一貫して最先端の故障検出性能を達成し、マシューズ相関係数全体のベースラインを著しく上回っている。
論文 参考訳(メタデータ) (2024-08-01T07:08:11Z) - AttributionScanner: A Visual Analytics System for Model Validation with Metadata-Free Slice Finding [29.07617945233152]
データスライス検索は、低パフォーマンスを示すデータセット内のサブグループを特定し解析することで、機械学習(ML)モデルを検証するための新興技術である。
このアプローチは、追加メタデータに対する退屈でコストのかかる要件を含む、重大な課題に直面します。
本稿では,メタデータを含まないデータスライス検索用に設計された,革新的なビジュアルアナリティクス(VA)システムであるAttributionScannerを紹介する。
本システムでは、一般的なモデル動作を含む解釈可能なデータスライスを特定し、属性モザイク設計によりこれらのパターンを可視化する。
論文 参考訳(メタデータ) (2024-01-12T09:17:32Z) - Annotating and Detecting Fine-grained Factual Errors for Dialogue
Summarization [34.85353544844499]
本稿では,DIASUMFACTというファクトエラーアノテーションを用いた最初のデータセットを提案する。
文レベルのマルチラベル分類問題として,ファクト・ファクト・エラー検出を定義する。
事前学習したエンコーダ-デコーダモデルを用いた候補ランキングによる教師なしモデルENDERANKERを提案する。
論文 参考訳(メタデータ) (2023-05-26T00:18:33Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Discover, Explanation, Improvement: An Automatic Slice Detection
Framework for Natural Language Processing [72.14557106085284]
スライス検出モデル(SDM)は、データポイントの低パフォーマンスなグループを自動的に識別する。
本稿では,NLPタスクの分類のための "Discover, Explain, improve (DEIM)" というベンチマークを提案する。
評価の結果,Edisaは情報的セマンティックな特徴を持つ誤り発生データポイントを正確に選択できることがわかった。
論文 参考訳(メタデータ) (2022-11-08T19:00:00Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。