Using Large Language Models for Legal Decision-Making in Austrian Value-Added Tax Law: An Experimental Study
- URL: http://arxiv.org/abs/2507.08468v1
- Date: Fri, 11 Jul 2025 10:19:56 GMT
- Title: Using Large Language Models for Legal Decision-Making in Austrian Value-Added Tax Law: An Experimental Study
- Authors: Marina Luketina, Andrea Benkel, Christoph G. Schuetz,
- Abstract summary: This paper provides an experimental evaluation of the capability of large language models (LLMs) to assist in legal decision-making within the framework of Austrian and European Union value-added tax (VAT) law.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper provides an experimental evaluation of the capability of large language models (LLMs) to assist in legal decision-making within the framework of Austrian and European Union value-added tax (VAT) law. In tax consulting practice, clients often describe cases in natural language, making LLMs a prime candidate for supporting automated decision-making and reducing the workload of tax professionals. Given the requirement for legally grounded and well-justified analyses, the propensity of LLMs to hallucinate presents a considerable challenge. The experiments focus on two common methods for enhancing LLM performance: fine-tuning and retrieval-augmented generation (RAG). In this study, these methods are applied on both textbook cases and real-world cases from a tax consulting firm to systematically determine the best configurations of LLM-based systems and assess the legal-reasoning capabilities of LLMs. The findings highlight the potential of using LLMs to support tax consultants by automating routine tasks and providing initial analyses, although current prototypes are not ready for full automation due to the sensitivity of the legal domain. The findings indicate that LLMs, when properly configured, can effectively support tax professionals in VAT tasks and provide legally grounded justifications for decisions. However, limitations remain regarding the handling of implicit client knowledge and context-specific documentation, underscoring the need for future integration of structured background information.
Related papers
- Taxation Perspectives from Large Language Models: A Case Study on Additional Tax Penalties [5.185522256407782]
We introduce PLAT, a new benchmark designed to assess the ability of LLMs to predict the legitimacy of additional tax penalties.<n>Our experiments with six LLMs reveal that their baseline capabilities are limited, especially when dealing with conflicting issues that demand a comprehensive understanding.
arXiv Detail & Related papers (2025-03-05T12:24:20Z) - LegalAgentBench: Evaluating LLM Agents in Legal Domain [53.70993264644004]
LegalAgentBench is a benchmark specifically designed to evaluate LLM Agents in the Chinese legal domain.<n>LegalAgentBench includes 17 corpora from real-world legal scenarios and provides 37 tools for interacting with external knowledge.
arXiv Detail & Related papers (2024-12-23T04:02:46Z) - Optimizing Numerical Estimation and Operational Efficiency in the Legal Domain through Large Language Models [13.067312163677933]
We propose a novel approach integrating Large Language Models with specially designed prompts to address precision requirements in legal Artificial Intelligence (LegalAI) applications.
To validate this method, we introduce a curated dataset tailored to precision-oriented LegalAI tasks.
arXiv Detail & Related papers (2024-07-26T18:46:39Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Law is a specialized LLM tailored for addressing diverse legal queries related to Chinese laws.
We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries.
InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks.
arXiv Detail & Related papers (2024-06-21T06:19:03Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
Large language models (LLMs) are revolutionizing the landscapes of finance, healthcare, and law.
We highlight the instrumental role of LLMs in enhancing diagnostic and treatment methodologies in healthcare, innovating financial analytics, and refining legal interpretation and compliance strategies.
We critically examine the ethics for LLM applications in these fields, pointing out the existing ethical concerns and the need for transparent, fair, and robust AI systems.
arXiv Detail & Related papers (2024-05-02T22:43:02Z) - Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction [62.409807640887834]
Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences.
LLMs' performance as correctors on CGEC remains unsatisfactory due to its challenging task focus.
We rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC.
arXiv Detail & Related papers (2024-02-18T01:40:34Z) - A Comprehensive Evaluation of Large Language Models on Legal Judgment
Prediction [60.70089334782383]
Large language models (LLMs) have demonstrated great potential for domain-specific applications.
Recent disputes over GPT-4's law evaluation raise questions concerning their performance in real-world legal tasks.
We design practical baseline solutions based on LLMs and test on the task of legal judgment prediction.
arXiv Detail & Related papers (2023-10-18T07:38:04Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
Legal Judgment Prediction (LJP) has become an increasingly crucial task in Legal AI.
Precedents are the previous legal cases with similar facts, which are the basis for the judgment of the subsequent case in national legal systems.
Recent advances in deep learning have enabled a variety of techniques to be used to solve the LJP task.
arXiv Detail & Related papers (2023-10-13T16:47:20Z) - LAiW: A Chinese Legal Large Language Models Benchmark [17.66376880475554]
General and legal domain LLMs have demonstrated strong performance in various tasks of LegalAI.
We are the first to build the Chinese legal LLMs benchmark LAiW, based on the logic of legal practice.
arXiv Detail & Related papers (2023-10-09T11:19:55Z) - Large Language Models as Tax Attorneys: A Case Study in Legal
Capabilities Emergence [5.07013500385659]
This paper explores Large Language Models' (LLMs) capabilities in applying tax law.
Our experiments demonstrate emerging legal understanding capabilities, with improved performance in each subsequent OpenAI model release.
Findings indicate that LLMs, particularly when combined with prompting enhancements and the correct legal texts, can perform at high levels of accuracy but not yet at expert tax lawyer levels.
arXiv Detail & Related papers (2023-06-12T12:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.