Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction
- URL: http://arxiv.org/abs/2402.11420v1
- Date: Sun, 18 Feb 2024 01:40:34 GMT
- Title: Rethinking the Roles of Large Language Models in Chinese Grammatical
Error Correction
- Authors: Yinghui Li, Shang Qin, Jingheng Ye, Shirong Ma, Yangning Li, Libo Qin,
Xuming Hu, Wenhao Jiang, Hai-Tao Zheng, Philip S. Yu
- Abstract summary: Chinese Grammatical Error Correction (CGEC) aims to correct all potential grammatical errors in the input sentences.
LLMs' performance as correctors on CGEC remains unsatisfactory due to its challenging task focus.
We rethink the roles of LLMs in the CGEC task so that they can be better utilized and explored in CGEC.
- Score: 62.409807640887834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Large Language Models (LLMs) have been widely studied by
researchers for their roles in various downstream NLP tasks. As a fundamental
task in the NLP field, Chinese Grammatical Error Correction (CGEC) aims to
correct all potential grammatical errors in the input sentences. Previous
studies have shown that LLMs' performance as correctors on CGEC remains
unsatisfactory due to its challenging task focus. To promote the CGEC field to
better adapt to the era of LLMs, we rethink the roles of LLMs in the CGEC task
so that they can be better utilized and explored in CGEC. Considering the rich
grammatical knowledge stored in LLMs and their powerful semantic understanding
capabilities, we utilize LLMs as explainers to provide explanation information
for the CGEC small models during error correction to enhance performance. We
also use LLMs as evaluators to bring more reasonable CGEC evaluations, thus
alleviating the troubles caused by the subjectivity of the CGEC task. In
particular, our work is also an active exploration of how LLMs and small models
better collaborate in downstream tasks. Extensive experiments and detailed
analyses on widely used datasets verify the effectiveness of our thinking
intuition and the proposed methods.
Related papers
- Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - A Reality check of the benefits of LLM in business [1.9181612035055007]
Large language models (LLMs) have achieved remarkable performance in language understanding and generation tasks.
This paper thoroughly examines the usefulness and readiness of LLMs for business processes.
arXiv Detail & Related papers (2024-06-09T02:36:00Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
Commit Message Generation (CMG) approaches aim to automatically generate commit messages based on given code diffs.
This paper conducts the first comprehensive experiment to investigate how far we have been in applying Large Language Models (LLMs) to generate high-quality commit messages.
arXiv Detail & Related papers (2024-04-23T08:24:43Z) - The Strong Pull of Prior Knowledge in Large Language Models and Its Impact on Emotion Recognition [74.04775677110179]
In-context Learning (ICL) has emerged as a powerful paradigm for performing natural language tasks with Large Language Models (LLM)
We show that LLMs have strong yet inconsistent priors in emotion recognition that ossify their predictions.
Our results suggest that caution is needed when using ICL with larger LLMs for affect-centered tasks outside their pre-training domain.
arXiv Detail & Related papers (2024-03-25T19:07:32Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
Large language model (LLM) has excellent performance and wide practical uses.
Existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios.
We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety.
Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system.
arXiv Detail & Related papers (2023-08-15T17:40:34Z) - Exploring the Integration of Large Language Models into Automatic Speech
Recognition Systems: An Empirical Study [0.0]
This paper explores the integration of Large Language Models (LLMs) into Automatic Speech Recognition (ASR) systems.
Our primary focus is to investigate the potential of using an LLM's in-context learning capabilities to enhance the performance of ASR systems.
arXiv Detail & Related papers (2023-07-13T02:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.