Generating Proto-Personas through Prompt Engineering: A Case Study on Efficiency, Effectiveness and Empathy
- URL: http://arxiv.org/abs/2507.08594v1
- Date: Fri, 11 Jul 2025 13:42:12 GMT
- Title: Generating Proto-Personas through Prompt Engineering: A Case Study on Efficiency, Effectiveness and Empathy
- Authors: Fernando Ayach, Vitor Lameirão, Raul Leão, Jerfferson Felizardo, Rafael Sobrinho, Vanessa Borges, Patrícia Matsubara, Awdren Fontão,
- Abstract summary: We propose and empirically investigate a prompt engineering-based approach to generate proto-personas with the support of Generative AI (GenAI)<n>Our goal is to evaluate the approach in terms of efficiency, effectiveness, user acceptance, and the empathy elicited by the generated personas.
- Score: 34.82692226532414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proto-personas are commonly used during early-stage Product Discovery, such as Lean Inception, to guide product definition and stakeholder alignment. However, the manual creation of proto-personas is often time-consuming, cognitively demanding, and prone to bias. In this paper, we propose and empirically investigate a prompt engineering-based approach to generate proto-personas with the support of Generative AI (GenAI). Our goal is to evaluate the approach in terms of efficiency, effectiveness, user acceptance, and the empathy elicited by the generated personas. We conducted a case study with 19 participants embedded in a real Lean Inception, employing a qualitative and quantitative methods design. The results reveal the approach's efficiency by reducing time and effort and improving the quality and reusability of personas in later discovery phases, such as Minimum Viable Product (MVP) scoping and feature refinement. While acceptance was generally high, especially regarding perceived usefulness and ease of use, participants noted limitations related to generalization and domain specificity. Furthermore, although cognitive empathy was strongly supported, affective and behavioral empathy varied significantly across participants. These results contribute novel empirical evidence on how GenAI can be effectively integrated into software Product Discovery practices, while also identifying key challenges to be addressed in future iterations of such hybrid design processes.
Related papers
- Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training [86.70255651945602]
We introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE)<n>RICE aims to improve reasoning performance without additional training or complexs.<n> Empirical evaluations with leading MoE-based LRMs demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization.
arXiv Detail & Related papers (2025-05-20T17:59:16Z) - Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.<n>Existing research predominantly concentrates on the security of general large language models.<n>This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
We propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL)<n>It employs self-generated natural language critiques as feedback to guide the step-level search process.<n>This approach bypasses the need for task-specific verifiers and the associated training overhead.
arXiv Detail & Related papers (2025-03-21T17:59:55Z) - KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
We present KBAlign, a self-supervised framework that enhances RAG systems through efficient model adaptation.<n>Our key insight is to leverage the model's intrinsic capabilities for knowledge alignment through two innovative mechanisms.<n> Experiments demonstrate that KBAlign can achieve 90% of the performance gain obtained through GPT-4-supervised adaptation.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - "Give Me an Example Like This": Episodic Active Reinforcement Learning from Demonstrations [3.637365301757111]
Methods like Reinforcement Learning from Expert Demonstrations (RLED) introduce external expert demonstrations to facilitate agent exploration during the learning process.
How to select the best set of human demonstrations that is most beneficial for learning becomes a major concern.
This paper presents EARLY, an algorithm that enables a learning agent to generate optimized queries of expert demonstrations in a trajectory-based feature space.
arXiv Detail & Related papers (2024-06-05T08:52:21Z) - Developing and Evaluating a Design Method for Positive Artificial Intelligence [0.5461938536945723]
Development of "AI for good" poses challenges around aligning systems with complex human values.<n>This article presents and evaluates the Positive AI design method aimed at addressing this gap.<n>The method provides a human-centered process to translate wellbeing aspirations into concrete practices.
arXiv Detail & Related papers (2024-02-02T15:31:08Z) - Evidential Active Recognition: Intelligent and Prudent Open-World
Embodied Perception [21.639429724987902]
Active recognition enables robots to explore novel observations, thereby acquiring more information while circumventing undesired viewing conditions.
Most recognition modules are developed under the closed-world assumption, which makes them ill-equipped to handle unexpected inputs, such as the absence of the target object in the current observation.
We propose treating active recognition as a sequential evidence-gathering process, providing by-step uncertainty and reliable prediction under the evidence combination theory.
arXiv Detail & Related papers (2023-11-23T03:51:46Z) - Generative Input: Towards Next-Generation Input Methods Paradigm [49.98958865125018]
We propose a novel Generative Input paradigm named GeneInput.
It uses prompts to handle all input scenarios and other intelligent auxiliary input functions, optimizing the model with user feedback to deliver personalized results.
The results demonstrate that we have achieved state-of-the-art performance for the first time in the Full-mode Key-sequence to Characters(FK2C) task.
arXiv Detail & Related papers (2023-11-02T12:01:29Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z) - Delayed Reinforcement Learning by Imitation [31.932677462399468]
We present a novel algorithm that learns how to act in a delayed environment from undelayed demonstrations.
We show that DIDA obtains high performances with a remarkable sample efficiency on a variety of tasks.
arXiv Detail & Related papers (2022-05-11T15:27:33Z) - Deciding Fast and Slow: The Role of Cognitive Biases in AI-assisted
Decision-making [46.625616262738404]
We use knowledge from the field of cognitive science to account for cognitive biases in the human-AI collaborative decision-making setting.
We focus specifically on anchoring bias, a bias commonly encountered in human-AI collaboration.
arXiv Detail & Related papers (2020-10-15T22:25:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.