Introspection of Thought Helps AI Agents
- URL: http://arxiv.org/abs/2507.08664v1
- Date: Fri, 11 Jul 2025 15:03:17 GMT
- Title: Introspection of Thought Helps AI Agents
- Authors: Haoran Sun, Shaoning Zeng,
- Abstract summary: Large Language Models (LLMs) and Multimodal-LLMs (MLLMs) play the most critical role and determine the initial ability and limitations of AI Agents.<n>We propose a novel AI Agent Reasoning Framework with Introspection of Thought (INoT) by designing a new LLM-Read code in prompt.<n>The effectiveness of INoT is verified, with an average improvement of 7.95% in performance, exceeding the baselines.
- Score: 19.04968632268433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI Agents rely on Large Language Models (LLMs) and Multimodal-LLMs (MLLMs) to perform interpretation and inference in text and image tasks without post-training, where LLMs and MLLMs play the most critical role and determine the initial ability and limitations of AI Agents. Usually, AI Agents utilize sophisticated prompt engineering and external reasoning framework to obtain a promising interaction with LLMs, e.g., Chain-of-Thought, Iteration of Thought and Image-of-Thought. However, they are still constrained by the inherent limitations of LLM in understanding natural language, and the iterative reasoning process will generate a large amount of inference cost. To this end, we propose a novel AI Agent Reasoning Framework with Introspection of Thought (INoT) by designing a new LLM-Read code in prompt. It enables LLM to execute programmatic dialogue reasoning processes following the code in prompt. Therefore, self-denial and reflection occur within LLM instead of outside LLM, which can reduce token cost effectively. Through our experiments on six benchmarks for three different tasks, the effectiveness of INoT is verified, with an average improvement of 7.95\% in performance, exceeding the baselines. Furthermore, the token cost of INoT is lower on average than the best performing method at baseline by 58.3\%. In addition, we demonstrate the versatility of INoT in image interpretation and inference through verification experiments.
Related papers
- IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problems with Reasoning LLM [15.260794368585692]
We propose OR-LLM-Agent, an AI agent framework built on reasoning LLMs for automated Operations Research problem solving.<n>We show that OR-LLM-Agent utilizing DeepSeek-R1 in its framework outperforms advanced methods, including GPT-o3, Gemini 2.5 Pro, DeepSeek-R1, and ORLM, by at least 7% in accuracy.
arXiv Detail & Related papers (2025-03-13T03:40:50Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - RePrompt: Planning by Automatic Prompt Engineering for Large Language Models Agents [27.807695570974644]
We propose a novel method, textscRePrompt, which does agradient descent"-like approach to optimize the step-by-step instructions in the prompts given to LLM agents.<n>By leveraging intermediate feedback, textscRePrompt can optimize the prompt without the need for a final solution checker.
arXiv Detail & Related papers (2024-06-17T01:23:11Z) - LLMs for Relational Reasoning: How Far are We? [8.840750655261251]
Large language models (LLMs) have revolutionized many areas by achieving state-of-the-art performance on downstream tasks.
Recent efforts have demonstrated that the LLMs are poor at solving sequential decision-making problems.
arXiv Detail & Related papers (2024-01-17T08:22:52Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
We propose a Multi-Agent Debate (MAD) framework, in which multiple agents express their arguments in the state of "tit for tat" and a judge manages the debate process to obtain a final solution.
Our framework encourages divergent thinking in LLMs which would be helpful for tasks that require deep levels of contemplation.
arXiv Detail & Related papers (2023-05-30T15:25:45Z) - SatLM: Satisfiability-Aided Language Models Using Declarative Prompting [68.40726892904286]
We propose a new satisfiability-aided language modeling (SatLM) approach for improving the reasoning capabilities of large language models (LLMs)
We use an LLM to generate a declarative task specification rather than an imperative program and leverage an off-the-shelf automated theorem prover to derive the final answer.
We evaluate SATLM on 8 different datasets and show that it consistently outperforms program-aided LMs in the imperative paradigm.
arXiv Detail & Related papers (2023-05-16T17:55:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.