MoSAiC: Multi-Modal Multi-Label Supervision-Aware Contrastive Learning for Remote Sensing
- URL: http://arxiv.org/abs/2507.08683v1
- Date: Fri, 11 Jul 2025 15:33:51 GMT
- Title: MoSAiC: Multi-Modal Multi-Label Supervision-Aware Contrastive Learning for Remote Sensing
- Authors: Debashis Gupta, Aditi Golder, Rongkhun Zhu, Kangning Cui, Wei Tang, Fan Yang, Ovidiu Csillik, Sarra Alaqahtani, V. Paul Pauca,
- Abstract summary: We introduce MoSAiC, a unified framework that jointly optimize intra- and inter-modality contrastive learning with a multi-label supervised contrastive loss.<n>MoSAiC consistently outperforms both fully supervised and self-supervised baselines in terms of accuracy, cluster coherence, and generalization.
- Score: 10.207026975603503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning (CL) has emerged as a powerful paradigm for learning transferable representations without the reliance on large labeled datasets. Its ability to capture intrinsic similarities and differences among data samples has led to state-of-the-art results in computer vision tasks. These strengths make CL particularly well-suited for Earth System Observation (ESO), where diverse satellite modalities such as optical and SAR imagery offer naturally aligned views of the same geospatial regions. However, ESO presents unique challenges, including high inter-class similarity, scene clutter, and ambiguous boundaries, which complicate representation learning -- especially in low-label, multi-label settings. Existing CL frameworks often focus on intra-modality self-supervision or lack mechanisms for multi-label alignment and semantic precision across modalities. In this work, we introduce MoSAiC, a unified framework that jointly optimizes intra- and inter-modality contrastive learning with a multi-label supervised contrastive loss. Designed specifically for multi-modal satellite imagery, MoSAiC enables finer semantic disentanglement and more robust representation learning across spectrally similar and spatially complex classes. Experiments on two benchmark datasets, BigEarthNet V2.0 and Sent12MS, show that MoSAiC consistently outperforms both fully supervised and self-supervised baselines in terms of accuracy, cluster coherence, and generalization in low-label and high-class-overlap scenarios.
Related papers
- DSAGL: Dual-Stream Attention-Guided Learning for Weakly Supervised Whole Slide Image Classification [5.260725801393189]
Whole-slide images (WSIs) are critical for cancer diagnosis due to their ultra-high resolution and rich semantic content.<n>We propose DSAGL (Dual-Stream Attention-Guided Learning), a novel weakly supervised classification framework that combines a teacher-student architecture with a dual-stream design.
arXiv Detail & Related papers (2025-05-29T11:07:16Z) - Imputation-free and Alignment-free: Incomplete Multi-view Clustering Driven by Consensus Semantic Learning [65.75756724642932]
In incomplete multi-view clustering, missing data induce prototype shifts within views and semantic inconsistencies across views.<n>We propose an IMVC framework, imputation- and alignment-free for consensus semantics learning (FreeCSL)<n>FreeCSL achieves more confident and robust assignments on IMVC task, compared to state-of-the-art competitors.
arXiv Detail & Related papers (2025-05-16T12:37:10Z) - Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention [59.19580789952102]
This paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks.<n>MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization.<n>MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations.
arXiv Detail & Related papers (2025-01-18T11:57:20Z) - SMC-NCA: Semantic-guided Multi-level Contrast for Semi-supervised Temporal Action Segmentation [53.010417880335424]
Semi-supervised temporal action segmentation (SS-TA) aims to perform frame-wise classification in long untrimmed videos.
Recent studies have shown the potential of contrastive learning in unsupervised representation learning using unlabelled data.
We propose a novel Semantic-guided Multi-level Contrast scheme with a Neighbourhood-Consistency-Aware unit (SMC-NCA) to extract strong frame-wise representations.
arXiv Detail & Related papers (2023-12-19T17:26:44Z) - Towards Generalized Multi-stage Clustering: Multi-view Self-distillation [10.368796552760571]
Existing multi-stage clustering methods independently learn the salient features from multiple views and then perform the clustering task.
This paper proposes a novel multi-stage deep MVC framework where multi-view self-distillation (DistilMVC) is introduced to distill dark knowledge of label distribution.
arXiv Detail & Related papers (2023-10-29T03:35:34Z) - SSLCL: An Efficient Model-Agnostic Supervised Contrastive Learning
Framework for Emotion Recognition in Conversations [20.856739541819056]
Emotion recognition in conversations (ERC) is a rapidly evolving task within the natural language processing community.
We propose an efficient and model-agnostic SCL framework named Supervised Sample-Label Contrastive Learning with Soft-HGR Maximal Correlation (SSLCL)
We introduce a novel perspective on utilizing label representations by projecting discrete labels into dense embeddings through a shallow multilayer perceptron.
arXiv Detail & Related papers (2023-10-25T14:41:14Z) - Graph-Aware Contrasting for Multivariate Time-Series Classification [50.84488941336865]
Existing contrastive learning methods mainly focus on achieving temporal consistency with temporal augmentation and contrasting techniques.
We propose Graph-Aware Contrasting for spatial consistency across MTS data.
Our proposed method achieves state-of-the-art performance on various MTS classification tasks.
arXiv Detail & Related papers (2023-09-11T02:35:22Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z) - Spatial-Temporal Multi-Cue Network for Continuous Sign Language
Recognition [141.24314054768922]
We propose a spatial-temporal multi-cue (STMC) network to solve the vision-based sequence learning problem.
To validate the effectiveness, we perform experiments on three large-scale CSLR benchmarks.
arXiv Detail & Related papers (2020-02-08T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.