Domain-Informed Operation Excellence of Gas Turbine System with Machine Learning
- URL: http://arxiv.org/abs/2507.08697v1
- Date: Fri, 11 Jul 2025 15:50:23 GMT
- Title: Domain-Informed Operation Excellence of Gas Turbine System with Machine Learning
- Authors: Waqar Muhammad Ashraf, Amir H. Keshavarzzadeh, Abdulelah S. Alshehri, Abdulrahman bin Jumah, Ramit Debnath, Vivek Dua,
- Abstract summary: Domain-consistent adoption of artificial intelligence (AI) remains low in thermal power plants.<n>We develop a MAhalanobis Distance-based OPTimization (MAD-OPT) framework to introduce domain knowledge into data-centric analytics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The domain-consistent adoption of artificial intelligence (AI) remains low in thermal power plants due to the black-box nature of AI algorithms and low representation of domain knowledge in conventional data-centric analytics. In this paper, we develop a MAhalanobis Distance-based OPTimization (MAD-OPT) framework that incorporates the Mahalanobis distance-based constraint to introduce domain knowledge into data-centric analytics. The developed MAD-OPT framework is applied to maximize thermal efficiency and minimize turbine heat rate for a 395 MW capacity gas turbine system. We demonstrate that the MAD-OPT framework can estimate domain-informed optimal process conditions under different ambient conditions, and the optimal solutions are found to be robust as evaluated by Monte Carlo simulations. We also apply the MAD-OPT framework to estimate optimal process conditions beyond the design power generation limit of the gas turbine system, and have found comparable results with the actual data of the power plant. We demonstrate that implementing data-centric optimization analytics without incorporating domain-informed constraints may provide ineffective solutions that may not be implementable in the real operation of the gas turbine system. This research advances the integration of the data-driven domain knowledge into machine learning-powered analytics that enhances the domain-informed operation excellence and paves the way for safe AI adoption in thermal power systems.
Related papers
- Domain Consistent Industrial Decarbonisation of Global Coal Power Plants [0.0]
Machine learning and optimisation techniques (MLOPT) hold significant potential to accelerate the decarbonisation of industrial systems.<n>However, the practical application of MLOPT in industrial settings is often hindered by a lack of domain compliance and system-specific consistency.<n>We propose a novel human-in-the-loop (HITL) constraint-based optimisation framework that integrates domain expertise with data-driven methods.
arXiv Detail & Related papers (2025-03-05T15:00:39Z) - Efficient Materials Informatics between Rockets and Electrons [0.0]
This dissertation focuses on the design of functionally graded materials (FGMs) incorporating ultra-high temperature refractory high entropy alloys (RHEAs)
At the atomistic level, a data ecosystem optimized for machine learning (ML) from over 4.5 million relaxed structures, called MPDD, is used to inform experimental observations and improve thermodynamic models.
The resulting multi-level discovery infrastructure is highly generalizable as it focuses on encoding problems to solve them easily rather than looking for an existing solution.
arXiv Detail & Related papers (2024-07-05T17:03:26Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures
Emulation [13.745581787463962]
We introduce FaIRGP, a data-driven emulator that satisfies the physical temperature response equations of an energy balance model.
We show how FaIRGP can be used to obtain estimates of top-of-atmosphere radiative forcing.
We hope that this work will contribute to widening the adoption of data-driven methods in climate emulation.
arXiv Detail & Related papers (2023-07-14T08:43:36Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Interpreting Machine Learning Models for Room Temperature Prediction in
Non-domestic Buildings [0.0]
This work presents an interpretable machine learning model aimed at predicting room temperature in non-domestic buildings.
We demonstrate experimentally that the proposed model can accurately forecast room temperatures eight hours ahead in real-time.
arXiv Detail & Related papers (2021-11-23T11:16:35Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - XAI4Wind: A Multimodal Knowledge Graph Database for Explainable Decision
Support in Operations & Maintenance of Wind Turbines [1.713291434132985]
Condition-based monitoring (CBM) has been widely utilised in the wind industry for monitoring operational inconsistencies and failures in turbines.
Existing studies do not present a concrete basis to facilitate explainable decision support in operations and maintenance.
We propose XAI4Wind, a multimodal knowledge graph for explainable decision support in real-world operational turbines.
arXiv Detail & Related papers (2020-12-18T19:54:19Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.