Domain Consistent Industrial Decarbonisation of Global Coal Power Plants
- URL: http://arxiv.org/abs/2503.03571v1
- Date: Wed, 05 Mar 2025 15:00:39 GMT
- Title: Domain Consistent Industrial Decarbonisation of Global Coal Power Plants
- Authors: Waqar Muhammad Ashraf, Vivek Dua, Ramit Debnath,
- Abstract summary: Machine learning and optimisation techniques (MLOPT) hold significant potential to accelerate the decarbonisation of industrial systems.<n>However, the practical application of MLOPT in industrial settings is often hindered by a lack of domain compliance and system-specific consistency.<n>We propose a novel human-in-the-loop (HITL) constraint-based optimisation framework that integrates domain expertise with data-driven methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning and optimisation techniques (MLOPT) hold significant potential to accelerate the decarbonisation of industrial systems by enabling data-driven operational improvements. However, the practical application of MLOPT in industrial settings is often hindered by a lack of domain compliance and system-specific consistency, resulting in suboptimal solutions with limited real-world applicability. To address this challenge, we propose a novel human-in-the-loop (HITL) constraint-based optimisation framework that integrates domain expertise with data-driven methods, ensuring solutions are both technically sound and operationally feasible. We demonstrate the efficacy of this framework through a case study focused on enhancing the thermal efficiency and reducing the turbine heat rate of a 660 MW supercritical coal-fired power plant. By embedding domain knowledge as constraints within the optimisation process, our approach yields solutions that align with the plant's operational patterns and are seamlessly integrated into its control systems. Empirical validation confirms a mean improvement in thermal efficiency of 0.64\% and a mean reduction in turbine heat rate of 93 kJ/kWh. Scaling our analysis to 59 global coal power plants with comparable capacity and fuel type, we estimate a cumulative lifetime reduction of 156.4 million tons of carbon emissions. These results underscore the transformative potential of our HITL-MLOPT framework in delivering domain-compliant, implementable solutions for industrial decarbonisation, offering a scalable pathway to mitigate the environmental impact of coal-based power generation worldwide.
Related papers
- Optimizing Large Language Models: Metrics, Energy Efficiency, and Case Study Insights [2.1249213103048414]
The rapid adoption of large language models (LLMs) has led to significant energy consumption and carbon emissions.
This paper explores the integration of energy-efficient optimization techniques in the deployment of LLMs to address these concerns.
arXiv Detail & Related papers (2025-04-07T21:56:59Z) - Improving Power Plant CO2 Emission Estimation with Deep Learning and Satellite/Simulated Data [0.0]
CO2 emissions from power plants, as significant super emitters, substantially contribute to global warming.<n>This study addresses challenges by expanding the available dataset through the integration of NO2 data from Sentinel-5P, generating continuous XCO2 maps, and incorporating real satellite observations from OCO-2/3 for over 71 power plants in data-scarce regions.
arXiv Detail & Related papers (2025-02-04T08:05:15Z) - Optimizing Carbon Footprint in ICT through Swarm Intelligence with Algorithmic Complexity [0.0]
Global emissions from fossil fuel combustion and cement production were recorded in 2022, signaling a resurgence to pre-pandemic levels.<n>This shows the need for further exploration of swarm intelligence applications to measure and optimize the carbon footprint within ICT.
arXiv Detail & Related papers (2025-01-20T02:34:55Z) - PV-faultNet: Optimized CNN Architecture to detect defects resulting efficient PV production [0.0]
This study presents PV-faultNet, a lightweight Convolutional Neural Network (CNN) architecture optimized for efficient and real-time defect detection in photovoltaic (PV) cells.
The model includes only 2.92 million parameters, significantly reducing processing demands without sacrificing accuracy.
It achieved high performance with 91% precision, 89% recall, and a 90% F1 score, demonstrating its effectiveness for scalable quality control in PV production.
arXiv Detail & Related papers (2024-11-05T10:58:37Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Efficient Strategies on Supply Chain Network Optimization for Industrial Carbon Emission Reduction [0.0]
This study investigates the efficient strategies for supply chain network optimization, specifically aimed at reducing industrial carbon emissions.
We introduce Adaptive Carbon Emissions Indexing (ACEI), utilizing real-time carbon emissions data to drive instantaneous adjustments in supply chain operations.
arXiv Detail & Related papers (2024-04-17T14:53:55Z) - A Safe Genetic Algorithm Approach for Energy Efficient Federated
Learning in Wireless Communication Networks [53.561797148529664]
Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner.
Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified.
The current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization.
arXiv Detail & Related papers (2023-06-25T13:10:38Z) - Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language
Model [72.65502770895417]
We quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life cycle.
We estimate that BLOOM's final training emitted approximately 24.7 tonnes ofcarboneqif we consider only the dynamic power consumption.
We conclude with a discussion regarding the difficulty of precisely estimating the carbon footprint of machine learning models.
arXiv Detail & Related papers (2022-11-03T17:13:48Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Estimating air quality co-benefits of energy transition using machine
learning [5.758035706324685]
Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement.
We develop a novel and succinct machine learning framework that is able to provide precise and robust annual average fine particle (PM2.5) concentration estimations.
Our findings prompt careful policy designs to maximize cost-effectiveness in the transition towards a carbon-neutral energy system.
arXiv Detail & Related papers (2021-05-29T14:52:57Z) - Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization [57.88118988775461]
We propose PROjected Feasibility (PROF) to enforce convex operational constraints within neural policies.
We demonstrate PROF on two applications: energy-efficient building operation and inverter control.
arXiv Detail & Related papers (2021-05-19T01:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.