Adaptive Nonlinear Vector Autoregression: Robust Forecasting for Noisy Chaotic Time Series
- URL: http://arxiv.org/abs/2507.08738v1
- Date: Fri, 11 Jul 2025 16:40:10 GMT
- Title: Adaptive Nonlinear Vector Autoregression: Robust Forecasting for Noisy Chaotic Time Series
- Authors: Azimov Sherkhon, Susana Lopez-Moreno, Eric Dolores-Cuenca, Sieun Lee, Sangil Kim,
- Abstract summary: vector autoregression and reservoir computing have shown promise in forecasting chaotic dynamical systems.<n>We propose an adaptive N model that combines delay-embedded linear inputs with features generated by a shallow, learnable multi-layer perceptron.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlinear vector autoregression (NVAR) and reservoir computing (RC) have shown promise in forecasting chaotic dynamical systems, such as the Lorenz-63 model and El Nino-Southern Oscillation. However, their reliance on fixed nonlinearities - polynomial expansions in NVAR or random feature maps in RC - limits their adaptability to high noise or real-world data. These methods also scale poorly in high-dimensional settings due to costly matrix inversion during readout computation. We propose an adaptive NVAR model that combines delay-embedded linear inputs with features generated by a shallow, learnable multi-layer perceptron (MLP). The MLP and linear readout are jointly trained using gradient-based optimization, enabling the model to learn data-driven nonlinearities while preserving a simple readout structure. Unlike standard NVAR, our approach avoids the need for an exhaustive and sensitive grid search over ridge and delay parameters. Instead, tuning is restricted to neural network hyperparameters, improving scalability. Initial experiments on chaotic systems tested under noise-free and synthetically noisy conditions showed that the adaptive model outperformed the standard NVAR in predictive accuracy and showed robust forecasting under noisy conditions with a lower observation frequency.
Related papers
- PnP-DA: Towards Principled Plug-and-Play Integration of Variational Data Assimilation and Generative Models [0.1052166918701117]
Earth system modeling presents a fundamental challenge in scientific computing.<n>Even the most powerful AI- or physics-based forecast system suffer from gradual error accumulation.<n>We propose a Plug-and-Play algorithm that alternates a lightweight, gradient-based analysis update with a single forward pass through a pretrained prior conditioned on the background forecast.
arXiv Detail & Related papers (2025-08-01T05:19:19Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
This paper proposes an efficient nonlinear modeling approach for multiple time series.
It incorporates nonlinear interactions among different time-series variables.
Experimental results show that the proposed algorithm improves the identification of the support of the VAR coefficients in a parsimonious manner.
arXiv Detail & Related papers (2023-09-29T11:42:59Z) - Exact identification of nonlinear dynamical systems by Trimmed Lasso [0.0]
Identification of nonlinear dynamical systems has been popularized by sparse identification of the nonlinear dynamics (SINDy) algorithm.
E-SINDy was proposed for model identification, handling finite, highly noisy data.
In this paper, we demonstrate that the Trimmed Lasso for robust identification of models (TRIM) can provide exact recovery under more severe noise, finite data, and multicollinearity as opposed to E-SINDy.
arXiv Detail & Related papers (2023-08-03T17:37:18Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Catch-22s of reservoir computing [0.0]
Reservoir Computing is a simple and efficient framework for forecasting the behavior of nonlinear dynamical systems from data.
We focus on the important problem of basin prediction -- determining which attractor a system will converge to from its initial conditions.
By incorporating the exact nonlinearities in the original equations, we show that NGRC can accurately reconstruct intricate and high-dimensional basins of attraction.
arXiv Detail & Related papers (2022-10-18T23:31:15Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Approximate Robust NMPC using Reinforcement Learning [0.0]
We present a Reinforcement Learning-based Robust Model Predictive Control (RL-RNMPC) for controlling nonlinear systems in the presence of disturbances and uncertainties.
arXiv Detail & Related papers (2021-04-06T18:34:58Z) - A Distributed Optimisation Framework Combining Natural Gradient with
Hessian-Free for Discriminative Sequence Training [16.83036203524611]
This paper presents a novel natural gradient and Hessian-free (NGHF) optimisation framework for neural network training.
It relies on the linear conjugate gradient (CG) algorithm to combine the natural gradient (NG) method with local curvature information from Hessian-free (HF) or other second-order methods.
Experiments are reported on the multi-genre broadcast data set for a range of different acoustic model types.
arXiv Detail & Related papers (2021-03-12T22:18:34Z) - LQF: Linear Quadratic Fine-Tuning [114.3840147070712]
We present the first method for linearizing a pre-trained model that achieves comparable performance to non-linear fine-tuning.
LQF consists of simple modifications to the architecture, loss function and optimization typically used for classification.
arXiv Detail & Related papers (2020-12-21T06:40:20Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Learning the Linear Quadratic Regulator from Nonlinear Observations [135.66883119468707]
We introduce a new problem setting for continuous control called the LQR with Rich Observations, or RichLQR.
In our setting, the environment is summarized by a low-dimensional continuous latent state with linear dynamics and quadratic costs.
Our results constitute the first provable sample complexity guarantee for continuous control with an unknown nonlinearity in the system model and general function approximation.
arXiv Detail & Related papers (2020-10-08T07:02:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.