A Hybrid Multi-Well Hopfield-CNN with Feature Extraction and K-Means for MNIST Classification
- URL: http://arxiv.org/abs/2507.08766v1
- Date: Fri, 11 Jul 2025 17:26:06 GMT
- Title: A Hybrid Multi-Well Hopfield-CNN with Feature Extraction and K-Means for MNIST Classification
- Authors: Ahmed Farooq,
- Abstract summary: This study presents a hybrid model for classifying handwritten digits in the MNIST dataset.<n>It combines convolutional neural networks (CNNs) with a multi-well Hopfield network.<n>The model achieves a high test accuracy of 99.2% on 10,000 MNIST images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a hybrid model for classifying handwritten digits in the MNIST dataset, combining convolutional neural networks (CNNs) with a multi-well Hopfield network. The approach employs a CNN to extract high-dimensional features from input images, which are then clustered into class-specific prototypes using k-means clustering. These prototypes serve as attractors in a multi-well energy landscape, where a Hopfield network performs classification by minimizing an energy function that balances feature similarity and class assignment.The model's design enables robust handling of intraclass variability, such as diverse handwriting styles, while providing an interpretable framework through its energy-based decision process. Through systematic optimization of the CNN architecture and the number of wells, the model achieves a high test accuracy of 99.2% on 10,000 MNIST images, demonstrating its effectiveness for image classification tasks. The findings highlight the critical role of deep feature extraction and sufficient prototype coverage in achieving high performance, with potential for broader applications in pattern recognition.
Related papers
- Research of the Variational Shadow Quantum Circuit Based on the Whale Optimization Algorithm in Image Classification [5.476164902473674]
This paper proposes an improved Variable Split Shadow Quantum Circuit (VSQC) model based on the Whale Optimization Algorithm.<n>In this paper, we use different localized shadow circuit VSQC models to achieve the binary classification task on the MNIST dataset.<n>Our design of strongly entangled shadow circuits performs the best in terms of classification accuracy.
arXiv Detail & Related papers (2025-05-15T06:14:02Z) - Enhanced Convolutional Neural Networks for Improved Image Classification [0.40964539027092917]
CIFAR-10 is a widely used benchmark to evaluate the performance of classification models on small-scale, multi-class datasets.<n>We propose an enhanced CNN architecture that integrates deeper convolutional blocks, batch normalization, and dropout regularization to achieve superior performance.
arXiv Detail & Related papers (2025-02-02T04:32:25Z) - Subgraph Clustering and Atom Learning for Improved Image Classification [4.499833362998488]
We present the Graph Sub-Graph Network (GSN), a novel hybrid image classification model merging the strengths of Convolutional Neural Networks (CNNs) for feature extraction and Graph Neural Networks (GNNs) for structural modeling.
GSN employs k-means clustering to group graph nodes into clusters, facilitating the creation of subgraphs.
These subgraphs are then utilized to learn representative atoms for dictionary learning, enabling the identification of sparse, class-distinguishable features.
arXiv Detail & Related papers (2024-07-20T06:32:00Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Multilinear Operator Networks [60.7432588386185]
Polynomial Networks is a class of models that does not require activation functions.
We propose MONet, which relies solely on multilinear operators.
arXiv Detail & Related papers (2024-01-31T16:52:19Z) - SENetV2: Aggregated dense layer for channelwise and global
representations [0.0]
We introduce a novel aggregated multilayer perceptron, a multi-branch dense layer, within the Squeeze residual module.
This fusion enhances the network's ability to capture channel-wise patterns and have global knowledge.
We conduct extensive experiments on benchmark datasets to validate the model and compare them with established architectures.
arXiv Detail & Related papers (2023-11-17T14:10:57Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - Multiscale Convolutional Transformer with Center Mask Pretraining for
Hyperspectral Image Classificationtion [14.33259265286265]
We propose a noval multi-scale convolutional embedding module for hyperspectral images (HSI) to realize effective extraction of spatial-spectral information.
Similar to Mask autoencoder, but our pre-training method only masks the corresponding token of the central pixel in the encoder, and inputs the remaining token into the decoder to reconstruct the spectral information of the central pixel.
arXiv Detail & Related papers (2022-03-09T14:42:26Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which are optimised to transform their inputs with dynamically computed weight vectors that align with task-relevant patterns.
CoDA Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-09-27T12:39:46Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.