Zero-Shot Neural Architecture Search with Weighted Response Correlation
- URL: http://arxiv.org/abs/2507.08841v2
- Date: Wed, 06 Aug 2025 09:48:18 GMT
- Title: Zero-Shot Neural Architecture Search with Weighted Response Correlation
- Authors: Kun Jing, Luoyu Chen, Jungang Xu, Jianwei Tai, Yiyu Wang, Shuaimin Li,
- Abstract summary: We present a novel training-free estimation proxy called weighted response correlation (WRCor)<n>WRCor utilizes coefficient correlation matrices of responses across different input samples to calculate the proxy scores of estimated architectures.<n>Our NAS algorithm can discover an architecture with a 22.1% test error on the ImageNet-1k dataset within 4 GPU hours.
- Score: 5.953576590699768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural architecture search (NAS) is a promising approach for automatically designing neural network architectures. However, the architecture estimation of NAS is computationally expensive and time-consuming because of training multiple architectures from scratch. Although existing zero-shot NAS methods use training-free proxies to accelerate the architecture estimation, their effectiveness, stability, and generality are still lacking. We present a novel training-free estimation proxy called weighted response correlation (WRCor). WRCor utilizes correlation coefficient matrices of responses across different input samples to calculate the proxy scores of estimated architectures, which can measure their expressivity and generalizability. Experimental results on proxy evaluation demonstrate that WRCor and its voting proxies are more efficient estimation strategies than existing proxies. We also apply them with different search strategies in architecture search. Experimental results on architecture search show that our zero-shot NAS algorithm outperforms most existing NAS algorithms in different search spaces. Our NAS algorithm can discover an architecture with a 22.1% test error on the ImageNet-1k dataset within 4 GPU hours. All codes are publicly available at https://github.com/kunjing96/ZSNAS-WRCor.git.
Related papers
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [56.09418231453024]
Neural architecture search (NAS) enables researchers to automatically explore vast search spaces and find efficient neural networks.<n>NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.<n>We propose the SMEM-NAS, a pairwise comparison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Efficacy of Neural Prediction-Based Zero-Shot NAS [0.04096453902709291]
We propose a novel approach for zero-shot Neural Architecture Search (NAS) using deep learning.
Our method employs Fourier sum of sines encoding for convolutional kernels, enabling the construction of a computational feed-forward graph with a structure similar to the architecture under evaluation.
Experimental results show that our approach surpasses previous methods using graph convolutional networks in terms of correlation on the NAS-Bench-201 dataset and exhibits a higher convergence rate.
arXiv Detail & Related papers (2023-08-31T14:54:06Z) - GeNAS: Neural Architecture Search with Better Generalization [14.92869716323226]
Recent neural architecture search (NAS) approaches rely on validation loss or accuracy to find the superior network for the target data.
In this paper, we investigate a new neural architecture search measure for excavating architectures with better generalization.
arXiv Detail & Related papers (2023-05-15T12:44:54Z) - NASiam: Efficient Representation Learning using Neural Architecture
Search for Siamese Networks [76.8112416450677]
Siamese networks are one of the most trending methods to achieve self-supervised visual representation learning (SSL)
NASiam is a novel approach that uses for the first time differentiable NAS to improve the multilayer perceptron projector and predictor (encoder/predictor pair)
NASiam reaches competitive performance in both small-scale (i.e., CIFAR-10/CIFAR-100) and large-scale (i.e., ImageNet) image classification datasets while costing only a few GPU hours.
arXiv Detail & Related papers (2023-01-31T19:48:37Z) - ZiCo: Zero-shot NAS via Inverse Coefficient of Variation on Gradients [17.139381064317778]
We propose a new zero-shot proxy, ZiCo, that works consistently better than #Params.
ZiCo-based NAS can find optimal architectures with 78.1%, 79.4%, and 80.4% test accuracy under inference budgets of 450M, 600M, and 1000M FLOPs, respectively.
arXiv Detail & Related papers (2023-01-26T18:38:56Z) - BaLeNAS: Differentiable Architecture Search via the Bayesian Learning
Rule [95.56873042777316]
Differentiable Architecture Search (DARTS) has received massive attention in recent years, mainly because it significantly reduces the computational cost.
This paper formulates the neural architecture search as a distribution learning problem through relaxing the architecture weights into Gaussian distributions.
We demonstrate how the differentiable NAS benefits from Bayesian principles, enhancing exploration and improving stability.
arXiv Detail & Related papers (2021-11-25T18:13:42Z) - FNAS: Uncertainty-Aware Fast Neural Architecture Search [54.49650267859032]
Reinforcement learning (RL)-based neural architecture search (NAS) generally guarantees better convergence yet suffers from the requirement of huge computational resources.
We propose a general pipeline to accelerate the convergence of the rollout process as well as the RL process in NAS.
Experiments on the Mobile Neural Architecture Search (MNAS) search space show the proposed Fast Neural Architecture Search (FNAS) accelerates standard RL-based NAS process by 10x.
arXiv Detail & Related papers (2021-05-25T06:32:52Z) - Contrastive Neural Architecture Search with Neural Architecture
Comparators [46.45102111497492]
One of the key steps in Neural Architecture Search (NAS) is to estimate the performance of candidate architectures.
Existing methods either directly use the validation performance or learn a predictor to estimate the performance.
We propose a novel Contrastive Neural Architecture Search (CTNAS) method which performs architecture search by taking the comparison results between architectures as the reward.
arXiv Detail & Related papers (2021-03-08T11:24:07Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
Recent predictor-based NAS approaches attempt to solve the problem with two key steps: sampling some architecture-performance pairs and fitting a proxy accuracy predictor.
We shift the paradigm from finding a complicated predictor that covers the whole architecture space to a set of weaker predictors that progressively move towards the high-performance sub-space.
Our method costs fewer samples to find the top-performance architectures on NAS-Bench-101 and NAS-Bench-201, and it achieves the state-of-the-art ImageNet performance on the NASNet search space.
arXiv Detail & Related papers (2021-02-21T01:58:43Z) - DA-NAS: Data Adapted Pruning for Efficient Neural Architecture Search [76.9225014200746]
Efficient search is a core issue in Neural Architecture Search (NAS)
We present DA-NAS that can directly search the architecture for large-scale target tasks while allowing a large candidate set in a more efficient manner.
It is 2x faster than previous methods while the accuracy is currently state-of-the-art, at 76.2% under small FLOPs constraint.
arXiv Detail & Related papers (2020-03-27T17:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.