論文の概要: Can We Predict Your Next Move Without Breaking Your Privacy?
- arxiv url: http://arxiv.org/abs/2507.08843v1
- Date: Tue, 08 Jul 2025 08:13:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:21.552259
- Title: Can We Predict Your Next Move Without Breaking Your Privacy?
- Title(参考訳): プライバシーを破ることなく次の動きを予測できるのか?
- Authors: Arpita Soni, Sahil Tripathi, Gautam Siddharth Kashyap, Manaswi Kulahara, Mohammad Anas Azeez, Zohaib Hasan Siddiqui, Nipun Joshi, Jiechao Gao,
- Abstract要約: FLLL3MはNext-Location Prediction(NxLP)のためのプライバシー保護フレームワークである
Gowalla (Acc@1: 12.55, MRR: 0.1422)、WeePlace (10.71, 0.1285)、Brightkite (10.42, 0.1169)、FourSquare (8.71, 0.1023)のSOT結果を実現し、パラメータを最大45.6%削減し、メモリ使用量を52.7%削減した。
- 参考スコア(独自算出の注目度): 4.829492320925751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose FLLL3M--Federated Learning with Large Language Models for Mobility Modeling--a privacy-preserving framework for Next-Location Prediction (NxLP). By retaining user data locally and leveraging LLMs through an efficient outer product mechanism, FLLL3M ensures high accuracy with low resource demands. It achieves SOT results on Gowalla (Acc@1: 12.55, MRR: 0.1422), WeePlace (10.71, 0.1285), Brightkite (10.42, 0.1169), and FourSquare (8.71, 0.1023), while reducing parameters by up to 45.6% and memory usage by 52.7%.
- Abstract(参考訳): FLLL3M-Federated Learning with Large Language Models for Mobility Modeling - 次位置予測(NxLP)のためのプライバシー保護フレームワークを提案する。
ユーザデータをローカルに保持し、効率的な外部製品メカニズムを通じてLCMを活用することにより、FLLL3Mはリソース要求の少ない精度を確保できる。
Gowalla (Acc@1: 12.55, MRR: 0.1422)、WeePlace (10.71, 0.1285)、Brightkite (10.42, 0.1169)、FourSquare (8.71, 0.1023)のSOT結果を実現し、パラメータを最大45.6%削減し、メモリ使用量を52.7%削減した。
関連論文リスト
- FedShield-LLM: A Secure and Scalable Federated Fine-Tuned Large Language Model [0.48342038441006796]
Federated Learning (FL)は、LLM(Large Language Models)のトレーニングと微調整のための分散フレームワークを提供する。
FLはプライバシとセキュリティの懸念に対処し、LLMの相当な計算要求に関連する課題をナビゲートする。
ローランド適応 (LoRA) パラメータに対して, 完全同型暗号化 (FHE) を用いたプルーニングを用いた新しいFedShield-LLMを提案する。
論文 参考訳(メタデータ) (2025-06-06T00:05:05Z) - PAPILLON: Privacy Preservation from Internet-based and Local Language Model Ensembles [21.340456482528136]
APIベースおよびローカルモデルをチェーンする新しいタスクであるPrivacy-Conscious Delegationを提案する。
我々は最近のユーザ-LLMインタラクションの公開コレクションを利用して、PUPAと呼ばれる自然なベンチマークを構築する。
私たちの最高のパイプラインは、85.5%のユーザクエリに対して高い応答品質を維持しながら、プライバシリークを7.5%に制限しています。
論文 参考訳(メタデータ) (2024-10-22T16:00:26Z) - Natural GaLore: Accelerating GaLore for memory-efficient LLM Training and Fine-tuning [1.3597551064547502]
GaLoreは、よりメモリ効率の良いフル教師付き学習を可能にする。
本研究はNatural GaLoreを導入し,低ランク勾配に対する逆経験的漁業情報行列を効率的に適用する。
論文 参考訳(メタデータ) (2024-10-21T14:05:06Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - MobileLLM: Optimizing Sub-billion Parameter Language Models for On-Device Use Cases [46.997172696192195]
本稿では、クラウドコストの増大とレイテンシの懸念により、モバイルデバイス上での効率的な大規模言語モデル(LLM)の必要性に対処する。
モバイルデプロイメントの実践的な選択として,10億未満のパラメータで高品質なLLMを設計することに重点を置いています。
論文 参考訳(メタデータ) (2024-02-22T18:58:55Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
事前訓練された大規模言語モデル(LLM)は、自然言語命令に対する応答性を改善するために微調整が必要である。
FedKSeedは、ランダムシードの有限セットによるゼロ階最適化を採用している。
サーバとクライアント間の通信要求を大幅に減らし、ランダムなシードをわずかに減らします。
論文 参考訳(メタデータ) (2023-12-11T13:03:21Z) - Alexa Teacher Model: Pretraining and Distilling Multi-Billion-Parameter
Encoders for Natural Language Understanding Systems [63.713297451300086]
本研究では,700Mから9.3Bまでの非埋め込みパラメータ数を持つ事前学習エンコーダの大規模実験結果について述べる。
その後、17M-170Mパラメータからより小さなモデルに蒸留し、仮想アシスタントシステムの自然言語理解(NLU)コンポーネントに応用した。
論文 参考訳(メタデータ) (2022-06-15T20:44:23Z) - PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices [13.62426382827205]
実時間物体検出器のPP-PicoDetファミリは,モバイルデバイスの物体検出において優れた性能を発揮する。
モデルは、他の一般的なモデルと比較して、精度とレイテンシのトレードオフを改善する。
論文 参考訳(メタデータ) (2021-11-01T12:53:17Z) - A TinyML Platform for On-Device Continual Learning with Quantized Latent
Replays [66.62377866022221]
Latent Replay-based Continual Learning (CL)技術は、原則としてオンライン、サーバレスの適応を可能にする。
10コアのFP32対応並列超低消費電力プロセッサをベースとした,エンドツーエンドCLのためのHW/SWプラットフォームを提案する。
これらの手法を組み合わせることで,64MB未満のメモリを用いて連続学習を実現することができることを示す。
論文 参考訳(メタデータ) (2021-10-20T11:01:23Z) - Non-Parametric Adaptive Network Pruning [125.4414216272874]
アルゴリズム設計を簡略化するノンパラメトリックモデリングを導入。
顔認識コミュニティに触発されて,メッセージパッシングアルゴリズムを用いて,適応的な例示数を求める。
EPrunerは「重要」フィルタを決定する際にトレーニングデータへの依存を壊します。
論文 参考訳(メタデータ) (2021-01-20T06:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。