Evaluating LLMs in Medicine: A Call for Rigor, Transparency
- URL: http://arxiv.org/abs/2507.08916v1
- Date: Fri, 11 Jul 2025 16:09:25 GMT
- Title: Evaluating LLMs in Medicine: A Call for Rigor, Transparency
- Authors: Mahmoud Alwakeel, Aditya Nagori, Vijay Krishnamoorthy, Rishikesan Kamaleswaran,
- Abstract summary: Methods: Widely-used benchmark datasets, including MedQA, MedMCQA, PubMedQA, and MMLU, were reviewed for their rigor, transparency, and relevance to clinical scenarios.<n>Alternatives, such as challenge questions in medical journals, were also analyzed to identify their potential as unbiased evaluation tools.
- Score: 2.2445597370194834
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Objectives: To evaluate the current limitations of large language models (LLMs) in medical question answering, focusing on the quality of datasets used for their evaluation. Materials and Methods: Widely-used benchmark datasets, including MedQA, MedMCQA, PubMedQA, and MMLU, were reviewed for their rigor, transparency, and relevance to clinical scenarios. Alternatives, such as challenge questions in medical journals, were also analyzed to identify their potential as unbiased evaluation tools. Results: Most existing datasets lack clinical realism, transparency, and robust validation processes. Publicly available challenge questions offer some benefits but are limited by their small size, narrow scope, and exposure to LLM training. These gaps highlight the need for secure, comprehensive, and representative datasets. Conclusion: A standardized framework is critical for evaluating LLMs in medicine. Collaborative efforts among institutions and policymakers are needed to ensure datasets and methodologies are rigorous, unbiased, and reflective of clinical complexities.
Related papers
- Ensuring Reliability of Curated EHR-Derived Data: The Validation of Accuracy for LLM/ML-Extracted Information and Data (VALID) Framework [0.0]
We propose a comprehensive framework for evaluating the quality of clinical data extracted by large language models (LLMs)<n>The framework integrates variable-level performance benchmarking against expert human abstraction, automated verification checks for internal consistency and plausibility, and replication analyses.<n>This multidimensional approach enables the identification of variables most in need of improvement, systematic detection of latent errors, and confirmation of dataset fitness-for-purpose in real-world research.
arXiv Detail & Related papers (2025-06-09T20:59:16Z) - Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
The reliability and accuracy of large language models (LLMs) in medical contexts remain critical concerns.<n>Current evaluation methods often lack robustness and fail to provide a comprehensive assessment of LLM performance.<n>We propose Med-CoDE, a specifically designed evaluation framework for medical LLMs to address these challenges.
arXiv Detail & Related papers (2025-04-21T16:51:11Z) - Structured Outputs Enable General-Purpose LLMs to be Medical Experts [50.02627258858336]
Large language models (LLMs) often struggle with open-ended medical questions.<n>We propose a novel approach utilizing structured medical reasoning.<n>Our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models.
arXiv Detail & Related papers (2025-03-05T05:24:55Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications [2.838746648891565]
We introduce MEDIC, a framework assessing Large Language Models (LLMs) across five critical dimensions of clinical competence.
We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks.
Results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths.
arXiv Detail & Related papers (2024-09-11T14:44:51Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - A Comprehensive Survey on Evaluating Large Language Model Applications in the Medical Industry [2.1717945745027425]
Large Language Models (LLMs) have evolved significantly, impacting various industries with their advanced capabilities in language understanding and generation.
This comprehensive survey delineates the extensive application and requisite evaluation of LLMs within healthcare.
Our survey is structured to provide an in-depth analysis of LLM applications across clinical settings, medical text data processing, research, education, and public health awareness.
arXiv Detail & Related papers (2024-04-24T09:55:24Z) - Does Biomedical Training Lead to Better Medical Performance? [2.3814275542331385]
Large Language Models (LLMs) are expected to significantly contribute to patient care, diagnostics, and administrative processes.
This study investigates the effect of biomedical training in the context of six practical medical tasks evaluating $25$ models.
arXiv Detail & Related papers (2024-04-05T12:51:37Z) - LongHealth: A Question Answering Benchmark with Long Clinical Documents [36.05587855811346]
We present the LongHealth benchmark, comprising 20 detailed fictional patient cases across various diseases.
The benchmark challenges LLMs with 400 multiple-choice questions in three categories: information extraction, negation, and sorting.
We evaluated nine open-source LLMs with a minimum of 16,000 tokens and also included OpenAI's proprietary and cost-efficient GPT-3.5 Turbo for comparison.
arXiv Detail & Related papers (2024-01-25T19:57:00Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.