MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications
- URL: http://arxiv.org/abs/2409.07314v1
- Date: Wed, 11 Sep 2024 14:44:51 GMT
- Title: MEDIC: Towards a Comprehensive Framework for Evaluating LLMs in Clinical Applications
- Authors: Praveen K Kanithi, Clément Christophe, Marco AF Pimentel, Tathagata Raha, Nada Saadi, Hamza Javed, Svetlana Maslenkova, Nasir Hayat, Ronnie Rajan, Shadab Khan,
- Abstract summary: We introduce MEDIC, a framework assessing Large Language Models (LLMs) across five critical dimensions of clinical competence.
We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks.
Results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths.
- Score: 2.838746648891565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid development of Large Language Models (LLMs) for healthcare applications has spurred calls for holistic evaluation beyond frequently-cited benchmarks like USMLE, to better reflect real-world performance. While real-world assessments are valuable indicators of utility, they often lag behind the pace of LLM evolution, likely rendering findings obsolete upon deployment. This temporal disconnect necessitates a comprehensive upfront evaluation that can guide model selection for specific clinical applications. We introduce MEDIC, a framework assessing LLMs across five critical dimensions of clinical competence: medical reasoning, ethics and bias, data and language understanding, in-context learning, and clinical safety. MEDIC features a novel cross-examination framework quantifying LLM performance across areas like coverage and hallucination detection, without requiring reference outputs. We apply MEDIC to evaluate LLMs on medical question-answering, safety, summarization, note generation, and other tasks. Our results show performance disparities across model sizes, baseline vs medically finetuned models, and have implications on model selection for applications requiring specific model strengths, such as low hallucination or lower cost of inference. MEDIC's multifaceted evaluation reveals these performance trade-offs, bridging the gap between theoretical capabilities and practical implementation in healthcare settings, ensuring that the most promising models are identified and adapted for diverse healthcare applications.
Related papers
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Demystifying Large Language Models for Medicine: A Primer [50.83806796466396]
Large language models (LLMs) represent a transformative class of AI tools capable of revolutionizing various aspects of healthcare.
This tutorial aims to equip healthcare professionals with the tools necessary to effectively integrate LLMs into clinical practice.
arXiv Detail & Related papers (2024-10-24T15:41:56Z) - CliMedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large Language Models in Clinical Scenarios [50.032101237019205]
CliMedBench is a comprehensive benchmark with 14 expert-guided core clinical scenarios.
The reliability of this benchmark has been confirmed in several ways.
arXiv Detail & Related papers (2024-10-04T15:15:36Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals.
GMAI-MMBench is the most comprehensive general medical AI benchmark with well-categorized data structure and multi-perceptual granularity to date.
It is constructed from 284 datasets across 38 medical image modalities, 18 clinical-related tasks, 18 departments, and 4 perceptual granularities in a Visual Question Answering (VQA) format.
arXiv Detail & Related papers (2024-08-06T17:59:21Z) - A Comprehensive Survey on Evaluating Large Language Model Applications in the Medical Industry [2.1717945745027425]
Large Language Models (LLMs) have evolved significantly, impacting various industries with their advanced capabilities in language understanding and generation.
This comprehensive survey delineates the extensive application and requisite evaluation of LLMs within healthcare.
Our survey is structured to provide an in-depth analysis of LLM applications across clinical settings, medical text data processing, research, education, and public health awareness.
arXiv Detail & Related papers (2024-04-24T09:55:24Z) - Towards Automatic Evaluation for LLMs' Clinical Capabilities: Metric, Data, and Algorithm [15.627870862369784]
Large language models (LLMs) are gaining increasing interests to improve clinical efficiency for medical diagnosis.
We propose an automatic evaluation paradigm tailored to assess the LLMs' capabilities in delivering clinical services.
arXiv Detail & Related papers (2024-03-25T06:17:54Z) - Automatic Interactive Evaluation for Large Language Models with State Aware Patient Simulator [21.60103376506254]
Large Language Models (LLMs) have demonstrated remarkable proficiency in human interactions.
This paper introduces the Automated Interactive Evaluation (AIE) framework and the State-Aware Patient Simulator (SAPS)
AIE and SAPS provide a dynamic, realistic platform for assessing LLMs through multi-turn doctor-patient simulations.
arXiv Detail & Related papers (2024-03-13T13:04:58Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
We introduce Asclepius, a novel benchmark for evaluating Medical Multi-Modal Large Language Models (Med-MLLMs)
Asclepius rigorously and comprehensively assesses model capability in terms of distinct medical specialties and different diagnostic capacities.
We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 5 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Evaluation of General Large Language Models in Contextually Assessing
Semantic Concepts Extracted from Adult Critical Care Electronic Health Record
Notes [17.648021186810663]
The purpose of this study was to evaluate the performance of Large Language Models (LLMs) in understanding and processing real-world clinical notes.
The GPT family models have demonstrated considerable efficiency, evidenced by their cost-effectiveness and time-saving capabilities.
arXiv Detail & Related papers (2024-01-24T16:52:37Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
Large language models (LLMs) often suffer from hallucinations, leading to overly confident but incorrect judgments.
This paper introduces an automated evaluation framework that assesses the practical capabilities of LLMs as virtual doctors during multi-turn consultations.
arXiv Detail & Related papers (2023-09-05T09:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.