On Evaluating Performance of LLM Inference Serving Systems
- URL: http://arxiv.org/abs/2507.09019v1
- Date: Fri, 11 Jul 2025 20:58:21 GMT
- Title: On Evaluating Performance of LLM Inference Serving Systems
- Authors: Amey Agrawal, Nitin Kedia, Anmol Agarwal, Jayashree Mohan, Nipun Kwatra, Souvik Kundu, Ramachandran Ramjee, Alexey Tumanov,
- Abstract summary: We identify recurring anti-patterns across three key dimensions: Baseline Fairness, Evaluation setup, and Metric Design.<n>These anti-patterns are uniquely problematic for Large Language Model (LLM) inference due to its dual-phase nature.<n>We provide a comprehensive checklist derived from our analysis, establishing a framework for recognizing and avoiding these anti-patterns.
- Score: 11.712948114304925
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of Large Language Model (LLM) inference systems has yielded significant efficiency improvements. However, our systematic analysis reveals that current evaluation methodologies frequently exhibit fundamental flaws, often manifesting as common evaluation anti-patterns that obscure true performance characteristics and impede scientific progress. Through a comprehensive examination of recent systems, we identify recurring anti-patterns across three key dimensions: Baseline Fairness, Evaluation Setup, and Metric Design. These anti-patterns are uniquely problematic for LLM inference due to its dual-phase nature combining distinct prefill and decode operations, its handling of highly heterogeneous workloads, and its strict temporal requirements for interactive use. We demonstrate how common anti-patterns -- such as inadequate baseline comparisons that conflate engineering effort with algorithmic novelty, workload selections that fail to represent production scenarios, and metric normalizations that hide substantial performance variability like generation stalls-lead to misleading conclusions. To address these challenges, we provide a comprehensive checklist derived from our analysis, establishing a framework for recognizing and avoiding these anti-patterns in favor of robust LLM inference evaluation. To demonstrate the practical application of our framework, we present a case study analyzing speculative decoding, a technique whose bursty, non-uniform token generation is easily misinterpreted when evaluated using approaches characteristic of these anti-patterns. Our work establishes a rigorous foundation for evaluation methodology, enabling meaningful comparisons, ensuring reproducible results, and ultimately accelerating genuine progress in LLM inference systems by moving beyond common anti-patterns to align evaluation with real-world requirements.
Related papers
- CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward [50.97588334916863]
We develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward.<n>It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types.<n>We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier.
arXiv Detail & Related papers (2025-08-05T17:55:24Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - Towards Robust LLMs: an Adversarial Robustness Measurement Framework [0.0]
Large Language Models (LLMs) remain vulnerable to adversarial perturbations, undermining their reliability in high-stakes applications.<n>We adapt the Robustness Measurement and Assessment framework to quantify LLM resilience against adversarial inputs without requiring access to model parameters.<n>Our work provides a systematic methodology to assess LLM robustness, advancing the development of more reliable language models for real-world deployment.
arXiv Detail & Related papers (2025-04-24T16:36:19Z) - A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility [29.437125712259046]
Reasoning has emerged as the next major frontier for language models (LMs)<n>We conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices.<n>We propose a standardized evaluation framework with clearly defined best practices and reporting standards.
arXiv Detail & Related papers (2025-04-09T17:58:17Z) - Contradiction Detection in RAG Systems: Evaluating LLMs as Context Validators for Improved Information Consistency [0.6827423171182154]
Retrieval Augmented Generation (RAG) systems have emerged as a powerful method for enhancing large language models (LLMs) with up-to-date information.<n>RAG can sometimes surface documents containing contradictory information, particularly in rapidly evolving domains such as news.<n>This study presents a novel data generation framework to simulate different types of contradictions that may occur in the retrieval stage of a RAG system.
arXiv Detail & Related papers (2025-03-31T19:41:15Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.<n>Models may behave unreliably due to poorly explored failure modes.<n> causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Automated Refactoring of Non-Idiomatic Python Code: A Differentiated Replication with LLMs [54.309127753635366]
We present the results of a replication study in which we investigate GPT-4 effectiveness in recommending and suggesting idiomatic actions.<n>Our findings underscore the potential of LLMs to achieve tasks where, in the past, implementing recommenders based on complex code analyses was required.
arXiv Detail & Related papers (2025-01-28T15:41:54Z) - Bridging Interpretability and Robustness Using LIME-Guided Model Refinement [0.0]
Local Interpretable Model-Agnostic Explanations (LIME) systematically enhance model robustness.<n> Empirical evaluations on multiple benchmark datasets demonstrate that LIME-guided refinement not only improves interpretability but also significantly enhances resistance to adversarial perturbations and generalization to out-of-distribution data.
arXiv Detail & Related papers (2024-12-25T17:32:45Z) - The Vulnerability of Language Model Benchmarks: Do They Accurately Reflect True LLM Performance? [1.3810901729134184]
Large Language Models (LLMs) excel at standardized tests while failing to demonstrate genuine language understanding and adaptability.<n>Our systematic analysis of NLP evaluation frameworks reveals pervasive vulnerabilities across the evaluation spectrum.<n>We lay the groundwork for new evaluation methods that resist manipulation, minimize data contamination, and assess domain-specific tasks.
arXiv Detail & Related papers (2024-12-02T20:49:21Z) - Sycophancy in Vision-Language Models: A Systematic Analysis and an Inference-Time Mitigation Framework [18.54098084470481]
We analyze sycophancy across vision-language benchmarks and propose an inference-time mitigation framework.<n>Our framework effectively mitigates sycophancy across all evaluated models, while maintaining performance on neutral prompts.
arXiv Detail & Related papers (2024-08-21T01:03:21Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.<n>We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.<n>Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.