Contradiction Detection in RAG Systems: Evaluating LLMs as Context Validators for Improved Information Consistency
- URL: http://arxiv.org/abs/2504.00180v1
- Date: Mon, 31 Mar 2025 19:41:15 GMT
- Title: Contradiction Detection in RAG Systems: Evaluating LLMs as Context Validators for Improved Information Consistency
- Authors: Vignesh Gokul, Srikanth Tenneti, Alwarappan Nakkiran,
- Abstract summary: Retrieval Augmented Generation (RAG) systems have emerged as a powerful method for enhancing large language models (LLMs) with up-to-date information.<n>RAG can sometimes surface documents containing contradictory information, particularly in rapidly evolving domains such as news.<n>This study presents a novel data generation framework to simulate different types of contradictions that may occur in the retrieval stage of a RAG system.
- Score: 0.6827423171182154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) systems have emerged as a powerful method for enhancing large language models (LLMs) with up-to-date information. However, the retrieval step in RAG can sometimes surface documents containing contradictory information, particularly in rapidly evolving domains such as news. These contradictions can significantly impact the performance of LLMs, leading to inconsistent or erroneous outputs. This study addresses this critical challenge in two ways. First, we present a novel data generation framework to simulate different types of contradictions that may occur in the retrieval stage of a RAG system. Second, we evaluate the robustness of different LLMs in performing as context validators, assessing their ability to detect contradictory information within retrieved document sets. Our experimental results reveal that context validation remains a challenging task even for state-of-the-art LLMs, with performance varying significantly across different types of contradictions. While larger models generally perform better at contradiction detection, the effectiveness of different prompting strategies varies across tasks and model architectures. We find that chain-of-thought prompting shows notable improvements for some models but may hinder performance in others, highlighting the complexity of the task and the need for more robust approaches to context validation in RAG systems.
Related papers
- Towards Long Context Hallucination Detection [49.195854802543714]
Large Language Models (LLMs) have demonstrated remarkable performance across various tasks.
They are prone to contextual hallucination, generating information that is either unsubstantiated or contradictory to the given context.
We propose a novel architecture that enables pre-trained encoder models, such as BERT, to process long contexts and effectively detect contextual hallucinations.
arXiv Detail & Related papers (2025-04-28T03:47:05Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.
We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
arXiv Detail & Related papers (2025-04-07T06:55:15Z) - MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement.<n>We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing.<n>We consolidate these insights into a final "recipe" called Multi-Agent Multi-Model Refinement (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance.
arXiv Detail & Related papers (2025-03-19T14:46:53Z) - Agentic Verification for Ambiguous Query Disambiguation [42.238086712267396]
We tackle the challenge of disambiguating queries in retrieval-augmented generation (RAG) to diverse yet answerable interpretations.<n>We propose a joint approach to unify diversification with verification by incorporating feedback from retriever and generator early on.<n>We validate the efficiency and effectiveness of our method on the widely adopted ASQA benchmark to achieve diverse yet verifiable interpretations.
arXiv Detail & Related papers (2025-02-14T18:31:39Z) - Breaking Focus: Contextual Distraction Curse in Large Language Models [68.4534308805202]
We investigate a critical vulnerability in Large Language Models (LLMs)<n>This phenomenon arises when models fail to maintain consistent performance on questions modified with semantically coherent but irrelevant context.<n>We propose an efficient tree-based search methodology to automatically generate CDV examples.
arXiv Detail & Related papers (2025-02-03T18:43:36Z) - Eliciting Critical Reasoning in Retrieval-Augmented Language Models via Contrastive Explanations [4.697267141773321]
Retrieval-augmented generation (RAG) has emerged as a critical mechanism in contemporary NLP to support Large Language Models (LLMs) in systematically accessing richer factual context.
Recent studies have shown that LLMs still struggle to critically analyse RAG-based in-context information, a limitation that may lead to incorrect inferences and hallucinations.
In this paper, we investigate how to elicit critical reasoning in RAG via contrastive explanations.
arXiv Detail & Related papers (2024-10-30T10:11:53Z) - Toward Robust RALMs: Revealing the Impact of Imperfect Retrieval on Retrieval-Augmented Language Models [5.10832476049103]
We identify three common scenarios-unanswerable, adversarial, conflicting-where retrieved document sets can confuse RALM with plausible real-world examples.
We propose a new adversarial attack method, Generative model-based ADVersarial attack (GenADV) and a novel metric Robustness under Additional Document (RAD)
Our findings reveal that RALMs often fail to identify the unanswerability or contradiction of a document set, which frequently leads to hallucinations.
arXiv Detail & Related papers (2024-10-19T13:40:33Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
Recent Retrieval Augmented Generation (RAG) aims to enhance Large Language Models (LLMs)
We propose the chain-of-verification (CoV-RAG) to enhance the external retrieval correctness and internal generation consistency.
arXiv Detail & Related papers (2024-10-08T08:34:54Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z) - MGTBench: Benchmarking Machine-Generated Text Detection [54.81446366272403]
This paper proposes the first benchmark framework for MGT detection against powerful large language models (LLMs)
We show that a larger number of words in general leads to better performance and most detection methods can achieve similar performance with much fewer training samples.
Our findings indicate that the model-based detection methods still perform well in the text attribution task.
arXiv Detail & Related papers (2023-03-26T21:12:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.