Conformation-Aware Structure Prediction of Antigen-Recognizing Immune Proteins
- URL: http://arxiv.org/abs/2507.09054v1
- Date: Fri, 11 Jul 2025 22:09:03 GMT
- Title: Conformation-Aware Structure Prediction of Antigen-Recognizing Immune Proteins
- Authors: Frédéric A. Dreyer, Jan Ludwiczak, Karolis Martinkus, Brennan Abanades, Robert G. Alberstein, Pan Kessel, Pranav Rao, Jae Hyeon Lee, Richard Bonneau, Andrew M. Watkins, Franziska Seeger,
- Abstract summary: We introduce Ibex, a pan-immunoglobulin structure prediction model.<n>It achieves state-of-the-art accuracy in modeling the variable domains of antibodies, nanobodies, and T-cell receptors.
- Score: 4.747546562792329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Ibex, a pan-immunoglobulin structure prediction model that achieves state-of-the-art accuracy in modeling the variable domains of antibodies, nanobodies, and T-cell receptors. Unlike previous approaches, Ibex explicitly distinguishes between bound and unbound protein conformations by training on labeled apo and holo structural pairs, enabling accurate prediction of both states at inference time. Using a comprehensive private dataset of high-resolution antibody structures, we demonstrate superior out-of-distribution performance compared to existing specialized and general protein structure prediction tools. Ibex combines the accuracy of cutting-edge models with significantly reduced computational requirements, providing a robust foundation for accelerating large molecule design and therapeutic development.
Related papers
- DISPROTBENCH: A Disorder-Aware, Task-Rich Benchmark for Evaluating Protein Structure Prediction in Realistic Biological Contexts [76.59606029593085]
DisProtBench is a benchmark for evaluating protein structure prediction models (PSPMs) under structural disorder and complex biological conditions.<n>DisProtBench spans three key axes: data complexity, task diversity, and Interpretability.<n>Results reveal significant variability in model robustness under disorder, with low-confidence regions linked to functional prediction failures.
arXiv Detail & Related papers (2025-06-18T23:58:22Z) - KEPLA: A Knowledge-Enhanced Deep Learning Framework for Accurate Protein-Ligand Binding Affinity Prediction [60.23701115249195]
KEPLA is a novel deep learning framework that integrates prior knowledge from Gene Ontology and ligand properties to enhance prediction performance.<n> Experiments on two benchmark datasets demonstrate that KEPLA consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-06-16T08:02:42Z) - Sequence-Only Prediction of Binding Affinity Changes: A Robust and Interpretable Model for Antibody Engineering [9.789817970737666]
A pivotal area of research in antibody engineering is to find effective modifications that enhance antibody-antigen binding affinity.<n>Deep learning solutions offer an alternative by modeling antibody structures to predict binding affinity changes.<n>We propose ProtAttBA, a deep learning model that predicts binding affinity changes based solely on the sequence information of antibody-antigen complexes.
arXiv Detail & Related papers (2025-05-14T15:00:46Z) - Exploring zero-shot structure-based protein fitness prediction [0.5524804393257919]
We make zero-shot predictions about the fitness consequences of protein sequence changes with pre-trained machine learning models.<n>We assess several modeling choices for structure-based models and their effects on downstream fitness prediction.
arXiv Detail & Related papers (2025-04-23T17:01:09Z) - ABodyBuilder3: Improved and scalable antibody structure predictions [3.013679260442809]
We introduce ABodyBuilder3, an improved and scalable antibody structure prediction model based on ImmuneBuilder.
We achieve a new state-of-the-art accuracy in the modelling of CDR loops by leveraging language model embeddings.
We incorporate a predicted Local Distance Difference Test into the model output to allow for a more accurate estimation of uncertainties.
arXiv Detail & Related papers (2024-05-31T14:45:11Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - EBM-Fold: Fully-Differentiable Protein Folding Powered by Energy-based
Models [53.17320541056843]
We propose a fully-differentiable approach for protein structure optimization, guided by a data-driven generative network.
Our EBM-Fold approach can efficiently produce high-quality decoys, compared against traditional Rosetta-based structure optimization routines.
arXiv Detail & Related papers (2021-05-11T03:40:29Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.