DISPROTBENCH: A Disorder-Aware, Task-Rich Benchmark for Evaluating Protein Structure Prediction in Realistic Biological Contexts
- URL: http://arxiv.org/abs/2507.02883v1
- Date: Wed, 18 Jun 2025 23:58:22 GMT
- Title: DISPROTBENCH: A Disorder-Aware, Task-Rich Benchmark for Evaluating Protein Structure Prediction in Realistic Biological Contexts
- Authors: Xinyue Zeng, Tuo Wang, Adithya Kulkarni, Alexander Lu, Alexandra Ni, Phoebe Xing, Junhan Zhao, Siwei Chen, Dawei Zhou,
- Abstract summary: DisProtBench is a benchmark for evaluating protein structure prediction models (PSPMs) under structural disorder and complex biological conditions.<n>DisProtBench spans three key axes: data complexity, task diversity, and Interpretability.<n>Results reveal significant variability in model robustness under disorder, with low-confidence regions linked to functional prediction failures.
- Score: 76.59606029593085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in protein structure prediction have achieved near-atomic accuracy for well-folded proteins. However, current benchmarks inadequately assess model performance in biologically challenging contexts, especially those involving intrinsically disordered regions (IDRs), limiting their utility in applications such as drug discovery, disease variant interpretation, and protein interface design. We introduce DisProtBench, a comprehensive benchmark for evaluating protein structure prediction models (PSPMs) under structural disorder and complex biological conditions. DisProtBench spans three key axes: (1) Data complexity, covering disordered regions, G protein-coupled receptor (GPCR) ligand pairs, and multimeric complexes; (2) Task diversity, benchmarking twelve leading PSPMs across structure-based tasks with unified classification, regression, and interface metrics; and (3) Interpretability, via the DisProtBench Portal, which provides precomputed 3D structures and visual error analyses. Our results reveal significant variability in model robustness under disorder, with low-confidence regions linked to functional prediction failures. Notably, global accuracy metrics often fail to predict task performance in disordered settings, emphasizing the need for function-aware evaluation. DisProtBench establishes a reproducible, extensible, and biologically grounded framework for assessing next-generation PSPMs in realistic biomedical scenarios.
Related papers
- Conformation-Aware Structure Prediction of Antigen-Recognizing Immune Proteins [4.747546562792329]
We introduce Ibex, a pan-immunoglobulin structure prediction model.<n>It achieves state-of-the-art accuracy in modeling the variable domains of antibodies, nanobodies, and T-cell receptors.
arXiv Detail & Related papers (2025-07-11T22:09:03Z) - PRING: Rethinking Protein-Protein Interaction Prediction from Pairs to Graphs [80.08310253195144]
PRING is the first benchmark that evaluates protein-protein interaction prediction from a graph-level perspective.<n> PRING curates a high-quality, multi-species PPI network dataset comprising 21,484 proteins and 186,818 interactions.
arXiv Detail & Related papers (2025-07-07T15:21:05Z) - Hierarchical Multi-Label Contrastive Learning for Protein-Protein Interaction Prediction Across Organisms [2.399426243085768]
We propose HIPPO, a hierarchical contrastive framework for protein-protein interaction prediction.<n>The proposed approach incorporates hierarchical contrastive loss functions that emulate the structured relationship among functional classes of proteins.<n> Experiments on benchmark datasets demonstrate that HIPPO achieves state-of-the-art performance, outperforming existing methods and showing robustness in low-data regimes.
arXiv Detail & Related papers (2025-07-03T15:41:04Z) - Exploring zero-shot structure-based protein fitness prediction [0.5524804393257919]
We make zero-shot predictions about the fitness consequences of protein sequence changes with pre-trained machine learning models.<n>We assess several modeling choices for structure-based models and their effects on downstream fitness prediction.
arXiv Detail & Related papers (2025-04-23T17:01:09Z) - ProteinBench: A Holistic Evaluation of Protein Foundation Models [53.59325047872512]
We introduce ProteinBench, a holistic evaluation framework for protein foundation models.
Our approach consists of three key components: (i) A taxonomic classification of tasks that broadly encompass the main challenges in the protein domain, based on the relationships between different protein modalities; (ii) A multi-metric evaluation approach that assesses performance across four key dimensions: quality, novelty, diversity, and robustness; and (iii) In-depth analyses from various user objectives, providing a holistic view of model performance.
arXiv Detail & Related papers (2024-09-10T06:52:33Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Protein 3D Graph Structure Learning for Robust Structure-based Protein
Property Prediction [43.46012602267272]
Protein structure-based property prediction has emerged as a promising approach for various biological tasks.
Current practices, which simply employ accurately predicted structures during inference, suffer from notable degradation in prediction accuracy.
Our framework is model-agnostic and effective in improving the property prediction of both predicted structures and experimental structures.
arXiv Detail & Related papers (2023-10-14T08:43:42Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.