Harnessing Text-to-Image Diffusion Models for Point Cloud Self-Supervised Learning
- URL: http://arxiv.org/abs/2507.09102v1
- Date: Sat, 12 Jul 2025 01:20:07 GMT
- Title: Harnessing Text-to-Image Diffusion Models for Point Cloud Self-Supervised Learning
- Authors: Yiyang Chen, Shanshan Zhao, Lunhao Duan, Changxing Ding, Dacheng Tao,
- Abstract summary: Diffusion-based models, widely used in text-to-image generation, have proven effective in 2D representation learning.<n>We propose PointSD, a framework that leverages the SD model for 3D self-supervised learning.
- Score: 61.04787144322498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based models, widely used in text-to-image generation, have proven effective in 2D representation learning. Recently, this framework has been extended to 3D self-supervised learning by constructing a conditional point generator for enhancing 3D representations. However, its performance remains constrained by the 3D diffusion model, which is trained on the available 3D datasets with limited size. We hypothesize that the robust capabilities of text-to-image diffusion models, particularly Stable Diffusion (SD), which is trained on large-scale datasets, can help overcome these limitations. To investigate this hypothesis, we propose PointSD, a framework that leverages the SD model for 3D self-supervised learning. By replacing the SD model's text encoder with a 3D encoder, we train a point-to-image diffusion model that allows point clouds to guide the denoising of rendered noisy images. With the trained point-to-image diffusion model, we use noise-free images as the input and point clouds as the condition to extract SD features. Next, we train a 3D backbone by aligning its features with these SD features, thereby facilitating direct semantic learning. Comprehensive experiments on downstream point cloud tasks and ablation studies demonstrate that the SD model can enhance point cloud self-supervised learning. Code is publicly available at https://github.com/wdttt/PointSD.
Related papers
- DiffSplat: Repurposing Image Diffusion Models for Scalable Gaussian Splat Generation [33.62074896816882]
DiffSplat is a novel 3D generative framework that generates 3D Gaussian splats by taming large-scale text-to-image diffusion models.<n>It differs from previous 3D generative models by effectively utilizing web-scale 2D priors while maintaining 3D consistency in a unified model.<n>In conjunction with the regular diffusion loss on these grids, a 3D rendering loss is introduced to facilitate 3D coherence across arbitrary views.
arXiv Detail & Related papers (2025-01-28T07:38:59Z) - A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision [65.33043028101471]
We present a novel framework for training 3D image-conditioned diffusion models using only 2D supervision.<n>Most existing 3D generative models rely on full 3D supervision, which is impractical due to the scarcity of large-scale 3D datasets.
arXiv Detail & Related papers (2024-12-01T00:29:57Z) - DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features [65.8738034806085]
DistillNeRF is a self-supervised learning framework for understanding 3D environments in autonomous driving scenes.
Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs.
arXiv Detail & Related papers (2024-06-17T21:15:13Z) - VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models [20.084928490309313]
This paper presents a novel method for building scalable 3D generative models utilizing pre-trained video diffusion models.
By unlocking its multi-view generative capabilities through fine-tuning, we generate a large-scale synthetic multi-view dataset to train a feed-forward 3D generative model.
The proposed model, VFusion3D, trained on nearly 3M synthetic multi-view data, can generate a 3D asset from a single image in seconds.
arXiv Detail & Related papers (2024-03-18T17:59:12Z) - VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder [56.59814904526965]
This paper introduces a pioneering 3D encoder designed for text-to-3D generation.
A lightweight network is developed to efficiently acquire feature volumes from multi-view images.
The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net.
arXiv Detail & Related papers (2023-12-18T18:59:05Z) - Viewset Diffusion: (0-)Image-Conditioned 3D Generative Models from 2D
Data [76.38261311948649]
Viewset Diffusion is a diffusion-based generator that outputs 3D objects while only using multi-view 2D data for supervision.
We train a diffusion model to generate viewsets, but design the neural network generator to reconstruct internally corresponding 3D models.
The model performs reconstruction efficiently, in a feed-forward manner, and is trained using only rendering losses using as few as three views per viewset.
arXiv Detail & Related papers (2023-06-13T16:18:51Z) - Control3Diff: Learning Controllable 3D Diffusion Models from Single-view
Images [70.17085345196583]
Control3Diff is a 3D diffusion model that combines the strengths of diffusion models and 3D GANs for versatile, controllable 3D-aware image synthesis.
We validate the efficacy of Control3Diff on standard image generation benchmarks, including FFHQ, AFHQ, and ShapeNet.
arXiv Detail & Related papers (2023-04-13T17:52:29Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z) - Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D
Generation [39.50894560861625]
3DFuse is a novel framework that incorporates 3D awareness into pretrained 2D diffusion models.
We introduce a training strategy that enables the 2D diffusion model learns to handle the errors and sparsity within the coarse 3D structure for robust generation.
arXiv Detail & Related papers (2023-03-14T14:24:31Z) - 3D Point Cloud Pre-training with Knowledge Distillation from 2D Images [128.40422211090078]
We propose a knowledge distillation method for 3D point cloud pre-trained models to acquire knowledge directly from the 2D representation learning model.
Specifically, we introduce a cross-attention mechanism to extract concept features from 3D point cloud and compare them with the semantic information from 2D images.
In this scheme, the point cloud pre-trained models learn directly from rich information contained in 2D teacher models.
arXiv Detail & Related papers (2022-12-17T23:21:04Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs.
In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis.
Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.
arXiv Detail & Related papers (2022-09-29T17:50:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.