Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning
- URL: http://arxiv.org/abs/2507.09118v1
- Date: Sat, 12 Jul 2025 02:28:42 GMT
- Title: Mind the Gap: Preserving and Compensating for the Modality Gap in CLIP-Based Continual Learning
- Authors: Linlan Huang, Xusheng Cao, Haori Lu, Yifan Meng, Fei Yang, Xialei Liu,
- Abstract summary: Contrastive Language-Image Pre-trained model (CLIP) exhibiting strong capabilities across various downstream tasks.<n>We analyze the variations in the modality gap during the fine-tuning of vision-language pre-trained models.<n>We propose a simple yet effective method, MG-CLIP, that improves CLIP's performance in class-incremental learning.
- Score: 11.50324946279326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continual learning aims to enable models to learn sequentially from continuously incoming data while retaining performance on previously learned tasks. With the Contrastive Language-Image Pre-trained model (CLIP) exhibiting strong capabilities across various downstream tasks, there has been growing interest in leveraging CLIP for continual learning in such scenarios. Most existing works overlook the inherent modality gap in CLIP, a key factor in its generalization and adaptability. In this paper, we analyze the variations in the modality gap during the fine-tuning of vision-language pre-trained models. Our observations reveal that the modality gap effectively reflects the extent to which pre-trained knowledge is preserved. Based on these insights, we propose a simple yet effective method, MG-CLIP, that improves CLIP's performance in class-incremental learning. Our approach leverages modality gap preservation to mitigate forgetting and modality gap compensation to enhance the capacity for new data, introducing a novel modality-gap-based perspective for continual learning. Extensive experiments on multiple benchmarks demonstrate that our method outperforms existing approaches without requiring additional replay data. Our code is available at https://github.com/linlany/MindtheGap.
Related papers
- Language Guided Concept Bottleneck Models for Interpretable Continual Learning [62.09201360376577]
Continual learning aims to enable learning systems to acquire new knowledge constantly without forgetting previously learned information.<n>Most existing CL methods focus primarily on preserving learned knowledge to improve model performance.<n>We introduce a novel framework that integrates language-guided Concept Bottleneck Models to address both challenges.
arXiv Detail & Related papers (2025-03-30T02:41:55Z) - Adaptive Rank, Reduced Forgetting: Knowledge Retention in Continual Learning Vision-Language Models with Dynamic Rank-Selective LoRA [19.982853959240497]
Pre-trained vision-language embedding models such as CLIP have been widely adopted and validated in Continual Learning (CL)<n>Existing CL methods primarily focus on continual downstream adaptation using components isolated from the pre-trained model (PTM)<n>We propose a universal and efficient CL approach for CLIP based on Dynamic Rank-Selective LoRA (CoDyRA)
arXiv Detail & Related papers (2024-12-01T23:41:42Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.<n>Our approach effectively mitigates Catastrophic Forgetting, outperforming strong Variational CL methods.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Train-Attention: Meta-Learning Where to Focus in Continual Knowledge Learning [15.475427498268393]
The Train-Attention-Augmented Language Model (TAALM) enhances learning efficiency by dynamically predicting and applying weights to tokens based on their usefulness.<n>We show that TAALM proves the state-of-the-art performance upon the baselines, and also shows synergistic compatibility when integrated with previous CKL approaches.
arXiv Detail & Related papers (2024-07-24T01:04:34Z) - CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning [17.614980614656407]
We propose Continual Generative training for Incremental prompt-Learning.
We exploit Variational Autoencoders to learn class-conditioned distributions.
We show that such a generative replay approach can adapt to new tasks while improving zero-shot capabilities.
arXiv Detail & Related papers (2024-07-22T16:51:28Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP [84.90129481336659]
We study transferrable representation learning underlying CLIP and demonstrate how features from different modalities get aligned.
Inspired by our analysis, we propose a new CLIP-type approach, which achieves better performance than CLIP and other state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2023-10-02T06:41:30Z) - Variance-Covariance Regularization Improves Representation Learning [28.341622247252705]
We adapt a self-supervised learning regularization technique to supervised learning contexts, introducing Variance-Covariance Regularization (VCReg)
We demonstrate that VCReg significantly enhances transfer learning for images and videos, achieving state-of-the-art performance across numerous tasks and datasets.
In summary, VCReg offers a universally applicable regularization framework that significantly advances transfer learning and highlights the connection between gradient starvation, neural collapse, and feature transferability.
arXiv Detail & Related papers (2023-06-23T05:01:02Z) - SLCA: Slow Learner with Classifier Alignment for Continual Learning on a
Pre-trained Model [73.80068155830708]
We present an extensive analysis for continual learning on a pre-trained model (CLPM)
We propose a simple but extremely effective approach named Slow Learner with Alignment (SLCA)
Across a variety of scenarios, our proposal provides substantial improvements for CLPM.
arXiv Detail & Related papers (2023-03-09T08:57:01Z) - Multimodal Parameter-Efficient Few-Shot Class Incremental Learning [1.9220716793379256]
Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions.
To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets.
CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.
arXiv Detail & Related papers (2023-03-08T17:34:15Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Continually Learning Self-Supervised Representations with Projected
Functional Regularization [39.92600544186844]
Recent self-supervised learning methods are able to learn high-quality image representations and are closing the gap with supervised methods.
These methods are unable to acquire new knowledge incrementally -- they are, in fact, mostly used only as a pre-training phase with IID data.
To prevent forgetting of previous knowledge, we propose the usage of functional regularization.
arXiv Detail & Related papers (2021-12-30T11:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.