Investigating the Robustness of Extreme Precipitation Super-Resolution Across Climates
- URL: http://arxiv.org/abs/2507.09166v1
- Date: Sat, 12 Jul 2025 07:04:07 GMT
- Title: Investigating the Robustness of Extreme Precipitation Super-Resolution Across Climates
- Authors: Louise Largeau, Erwan Koch, David Leutwyler, Gregoire Mariethoz, Valerie Chavez-Demoulin, Tom Beucler,
- Abstract summary: coarse spatial resolution of gridded climate models limits their use in projecting socially relevant variables like extreme precipitation.<n>We propose super-resolving the parameters of the target variable's probability distribution using analytically tractable mappings.<n>Our framework is broadly applicable to variables governed by parametric distributions and offers a model-agnostic diagnostic for understanding when and why empirical downscaling generalizes to climate change and extremes.
- Score: 0.07276318984353923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The coarse spatial resolution of gridded climate models, such as general circulation models, limits their direct use in projecting socially relevant variables like extreme precipitation. Most downscaling methods estimate the conditional distributions of extremes by generating large ensembles, complicating the assessment of robustness under distributional shifts, such as those induced by climate change. To better understand and potentially improve robustness, we propose super-resolving the parameters of the target variable's probability distribution directly using analytically tractable mappings. Within a perfect-model framework over Switzerland, we demonstrate that vector generalized linear and additive models can super-resolve the generalized extreme value distribution of summer hourly precipitation extremes from coarse precipitation fields and topography. We introduce the notion of a "robustness gap", defined as the difference in predictive error between present-trained and future-trained models, and use it to diagnose how model structure affects the generalization of each quantile to a pseudo-global warming scenario. By evaluating multiple model configurations, we also identify an upper limit on the super-resolution factor based on the spatial auto- and cross-correlation of precipitation and elevation, beyond which coarse precipitation loses predictive value. Our framework is broadly applicable to variables governed by parametric distributions and offers a model-agnostic diagnostic for understanding when and why empirical downscaling generalizes to climate change and extremes.
Related papers
- Diffusion models for probabilistic precipitation generation from atmospheric variables [1.6099193327384094]
In Earth system models (ESMs), precipitation is not resolved explicitly, but represented by parameterizations.<n>We present a novel approach, based on generative machine learning, which integrates a conditional diffusion model with a UNet architecture.<n>Unlike traditional parameterizations, our framework efficiently produces ensemble predictions, capturing uncertainties in precipitation, and does not require fine-tuning by hand.
arXiv Detail & Related papers (2025-04-01T00:21:31Z) - Downscaling Precipitation with Bias-informed Conditional Diffusion Model [10.545983522538085]
Current Global Climate Models operate at spatial resolutions too coarse for localized analyses.<n>Deep learning-based statistical downscaling methods offer promising solutions.<n>We introduce a bias-informed conditional diffusion model for statistical downscaling of precipitation.
arXiv Detail & Related papers (2024-12-19T05:36:52Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Towards Generalizable and Interpretable Motion Prediction: A Deep
Variational Bayes Approach [54.429396802848224]
This paper proposes an interpretable generative model for motion prediction with robust generalizability to out-of-distribution cases.
For interpretability, the model achieves the target-driven motion prediction by estimating the spatial distribution of long-term destinations.
Experiments on motion prediction datasets validate that the fitted model can be interpretable and generalizable.
arXiv Detail & Related papers (2024-03-10T04:16:04Z) - Diffusion Model-based Probabilistic Downscaling for 180-year East Asian Climate Reconstruction [8.132450337453525]
We introduce a diffusion probabilistic downscaling model (DPDM) into the meteorological field.
This model can efficiently transform data from 1deg to 0.1deg resolution.
We apply the model to generate a 180-year dataset of monthly surface variables in East Asia.
arXiv Detail & Related papers (2024-02-02T01:34:33Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Distributional Gradient Boosting Machines [77.34726150561087]
Our framework is based on XGBoost and LightGBM.
We show that our framework achieves state-of-the-art forecast accuracy.
arXiv Detail & Related papers (2022-04-02T06:32:19Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
We train a conditional Generative Adversarial Network -- coined CorrectorGAN -- to produce ensembles of high-resolution, bias-corrected forecasts.
CorrectorGAN, once trained, produces predictions in seconds on a single machine.
Results raise exciting questions about the necessity of regional models, and whether data-driven downscaling and correction methods can be transferred to data-poor regions.
arXiv Detail & Related papers (2022-03-23T09:45:12Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.