論文の概要: AGCD-Net: Attention Guided Context Debiasing Network for Emotion Recognition
- arxiv url: http://arxiv.org/abs/2507.09248v1
- Date: Sat, 12 Jul 2025 11:03:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:22.856721
- Title: AGCD-Net: Attention Guided Context Debiasing Network for Emotion Recognition
- Title(参考訳): AGCD-Net:感情認識のための注意ガイド付きコンテキストデバイアスネットワーク
- Authors: Varsha Devi, Amine Bohi, Pardeep Kumar,
- Abstract要約: 我々は,意図的文脈バイアスモデルである textbfAGCD-Net を提案する。
AGCD-Netの中核には、因果理論、摂動コンテキストの特徴を適用し、刺激的な相関を分離し、顔の特徴によってコンテキストバイアスに導かれる注意駆動補正を行う、注意誘導-因果干渉モジュール(AG-CIM)がある。
CAER-Sデータセットによる実験結果から,AGCD-Netの有効性,最先端性能の実現,複雑な環境下での堅牢な感情認識における因果脱バイアスの重要性が示された。
- 参考スコア(独自算出の注目度): 0.7032245866317619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Context-aware emotion recognition (CAER) enhances affective computing in real-world scenarios, but traditional methods often suffer from context bias-spurious correlation between background context and emotion labels (e.g. associating ``garden'' with ``happy''). In this paper, we propose \textbf{AGCD-Net}, an Attention Guided Context Debiasing model that introduces \textit{Hybrid ConvNeXt}, a novel convolutional encoder that extends the ConvNeXt backbone by integrating Spatial Transformer Network and Squeeze-and-Excitation layers for enhanced feature recalibration. At the core of AGCD-Net is the Attention Guided - Causal Intervention Module (AG-CIM), which applies causal theory, perturbs context features, isolates spurious correlations, and performs an attention-driven correction guided by face features to mitigate context bias. Experimental results on the CAER-S dataset demonstrate the effectiveness of AGCD-Net, achieving state-of-the-art performance and highlighting the importance of causal debiasing for robust emotion recognition in complex settings.
- Abstract(参考訳): 文脈対応感情認識(CAER)は実世界のシナリオにおいて感情的コンピューティングを強化するが、従来の手法では背景コンテキストと感情ラベル(例えば ``garden'' と ``happy''' を関連付ける)のコンテキストバイアスによる相関に悩まされることが多い。
本稿では,空間トランスフォーマーネットワークとSqueeze-and-Excitationレイヤを統合して機能再構成を行うことで,ConvNeXtのバックボーンを拡張した新しい畳み込みエンコーダである \textit{Hybrid ConvNeXt} を導入し,アテンションガイド付きコンテキストデバイアスモデルである \textbf{AGCD-Net} を提案する。
AGCD-Netの中核には、因果理論、摂動コンテキストの特徴を適用し、刺激的な相関を分離し、顔の特徴によって導かれる注意駆動補正を実行し、コンテキストバイアスを緩和するAttention Guided - Causal Intervention Module (AG-CIM)がある。
CAER-Sデータセットによる実験結果から,AGCD-Netの有効性,最先端性能の実現,複雑な環境下での堅牢な感情認識における因果脱バイアスの重要性が示された。
関連論文リスト
- AlignRAG: Leveraging Critique Learning for Evidence-Sensitive Retrieval-Augmented Reasoning [61.28113271728859]
RAGは知識ベースで大規模言語モデル(LLM)を実現するためのパラダイムとして広く採用されている。
標準的なRAGパイプラインは、モデル推論が取得した証拠と整合性を維持するのに失敗することが多く、事実上の矛盾や否定的な結論につながる。
本研究では,RAGをRetrieval-Augmented Reasoningと解釈し,中心的だが未探索な問題であるtextitReasoning Misalignmentを同定する。
論文 参考訳(メタデータ) (2025-04-21T04:56:47Z) - Dynamic Attention-Guided Context Decoding for Mitigating Context Faithfulness Hallucinations in Large Language Models [26.51079570548107]
大型言語モデル (LLM) は、しばしば文脈に忠実な幻覚を示す。
単一パスデコーディングにおける注意分布と不確実性信号を利用する軽量なフレームワークである動的注意誘導コンテキストデコーディング(DAGCD)を提案する。
論文 参考訳(メタデータ) (2025-01-02T05:07:06Z) - Towards Context-Aware Emotion Recognition Debiasing from a Causal Demystification Perspective via De-confounded Training [14.450673163785094]
文脈認識感情認識(CAER)は、対象者の感情を認識するための貴重な意味的手がかりを提供する。
現在のアプローチは、コンテキストから知覚的に重要な表現を抽出する洗練された構造を設計することに集中している。
共同設立者を非難するためのCCIM(Contextual Causal Intervention Module)を提案する。
論文 参考訳(メタデータ) (2024-07-06T05:29:02Z) - Two in One Go: Single-stage Emotion Recognition with Decoupled Subject-context Transformer [78.35816158511523]
単段階の感情認識手法として,DSCT(Decoupled Subject-Context Transformer)を用いる。
広範に使われている文脈認識型感情認識データセットであるCAER-SとEMOTICの単段階フレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-04-26T07:30:32Z) - Robust Emotion Recognition in Context Debiasing [12.487614699507793]
文脈認識型感情認識(CAER)は、近年、制約のない環境における感情コンピューティング技術の実践的応用を高めている。
進歩にもかかわらず、最大の課題は、コンテキストバイアスの干渉によるものである。
本稿では,このような問題に対処する対実的感情推定(CLEF)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-09T17:05:43Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
本稿では,完全な参照 (FR) と非参照 (NR) IQA を行うネットワークを提案する。
まず、入力画像から多レベル特徴を抽出するためにエンコーダを用いる。
FRおよびNR入力のユニバーサルアダプタとして階層的注意(HA)モジュールを提案する。
エンコーダの浅い層と深い層との間の特徴相関を調べるために, セマンティック・ディストーション・アウェア (SDA) モジュールを提案する。
論文 参考訳(メタデータ) (2023-10-14T11:03:04Z) - Context De-confounded Emotion Recognition [12.037240778629346]
コンテキストアウェア感情認識(CAER)は、対象者の感情状態を文脈情報で知覚することを目的としている。
長年見過ごされてきた問題は、既存のデータセットのコンテキストバイアスが感情状態のかなり不均衡な分布をもたらすことである。
本稿では、そのようなバイアスの影響からモデルを切り離し、CAERタスクにおける変数間の因果関係を定式化する因果関係に基づく視点を提供する。
論文 参考訳(メタデータ) (2023-03-21T15:12:20Z) - FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced
Context-Aware Network [48.912196729711624]
Few-shot セマンティックセグメンテーション(Few-shot semantic segmentation)は、新しいクラスの各ピクセルを、わずかに注釈付きサポートイメージで検索するタスクである。
本稿では,クラス間の類似性に起因するマッチングノイズを抑制するために,機能拡張コンテキスト認識ネットワーク(FECANet)を提案する。
さらに,前景と背景の余分な対応関係を符号化する新たな相関再構成モジュールを提案する。
論文 参考訳(メタデータ) (2023-01-19T16:31:13Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Out of Context: A New Clue for Context Modeling of Aspect-based
Sentiment Analysis [54.735400754548635]
ABSAは、与えられた側面に関してレビューで表現された感情を予測することを目的としている。
与えられたアスペクトは、コンテキストモデリングプロセスにおけるコンテキストからの新たなヒントと見なされるべきである。
異なるバックボーンに基づいて複数のアスペクト認識コンテキストエンコーダを設計する。
論文 参考訳(メタデータ) (2021-06-21T02:26:03Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。