Ambiguity-Aware and High-Order Relation Learning for Multi-Grained Image-Text Matching
- URL: http://arxiv.org/abs/2507.09256v1
- Date: Sat, 12 Jul 2025 11:30:32 GMT
- Title: Ambiguity-Aware and High-Order Relation Learning for Multi-Grained Image-Text Matching
- Authors: Junyu Chen, Yihua Gao, Mingyuan Ge, Mingyong Li,
- Abstract summary: This paper proposes the Ambiguity-Aware and High-order Relation learning framework (AAHR) to address these issues.<n>The framework introduces global and local feature extraction mechanisms and an adaptive aggregation network, significantly enhancing full-grained semantic understanding capabilities.<n> Experimental results demonstrate that AAHR outperforms existing state-of-the-art methods on Flickr30K, MSCOCO, and ECCV Caption datasets.
- Score: 6.633576185707164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-text matching is crucial for bridging the semantic gap between computer vision and natural language processing. However, existing methods still face challenges in handling high-order associations and semantic ambiguities among similar instances. These ambiguities arise from subtle differences between soft positive samples (semantically similar but incorrectly labeled) and soft negative samples (locally matched but globally inconsistent), creating matching uncertainties. Furthermore, current methods fail to fully utilize the neighborhood relationships among semantically similar instances within training batches, limiting the model's ability to learn high-order shared knowledge. This paper proposes the Ambiguity-Aware and High-order Relation learning framework (AAHR) to address these issues. AAHR constructs a unified representation space through dynamic clustering prototype contrastive learning, effectively mitigating the soft positive sample problem. The framework introduces global and local feature extraction mechanisms and an adaptive aggregation network, significantly enhancing full-grained semantic understanding capabilities. Additionally, AAHR employs intra-modal and inter-modal correlation matrices to investigate neighborhood relationships among sample instances thoroughly. It incorporates GNN to enhance semantic interactions between instances. Furthermore, AAHR integrates momentum contrastive learning to expand the negative sample set. These combined strategies significantly improve the model's ability to discriminate between features. Experimental results demonstrate that AAHR outperforms existing state-of-the-art methods on Flickr30K, MSCOCO, and ECCV Caption datasets, considerably improving the accuracy and efficiency of image-text matching. The code and model checkpoints for this research are available at https://github.com/Image-Text-Matching/AAHR .
Related papers
- Open-Vocabulary HOI Detection with Interaction-aware Prompt and Concept Calibration [42.24582981160835]
Open Human-Object Interaction (HOI) detection aims to detect interactions between humans and objects.<n>Current methods often rely on Vision and Language Models (VLMs) but face challenges due to suboptimal image encoders.<n>We propose INteraction-aware Prompting with Concept (INP-CC), an end-to-end open-vocabulary HOI detector.
arXiv Detail & Related papers (2025-08-05T08:33:58Z) - Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
Unsupervised person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning.<n>Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning.<n>We propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up objective for specific fine-grained patterns emphasized by each modality.
arXiv Detail & Related papers (2025-04-27T13:58:12Z) - Underlying Semantic Diffusion for Effective and Efficient In-Context Learning [113.4003355229632]
Underlying Semantic Diffusion (US-Diffusion) is an enhanced diffusion model that boosts underlying semantics learning, computational efficiency, and in-context learning capabilities.<n>We present a Feedback-Aided Learning (FAL) framework, which leverages feedback signals to guide the model in capturing semantic details.<n>We also propose a plug-and-play Efficient Sampling Strategy (ESS) for dense sampling at time steps with high-noise levels.
arXiv Detail & Related papers (2025-03-06T03:06:22Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
We present a novel model-agnostic framework called textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA)
CEFA consists of a feature alignment module and a context enhancement module.
Our method can serve as a plug-and-play module to improve the detection performance of HOI models on rare categories.
arXiv Detail & Related papers (2024-07-31T08:42:48Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced
Context-Aware Network [48.912196729711624]
Few-shot semantic segmentation is the task of learning to locate each pixel of a novel class in a query image with only a few annotated support images.
We propose a Feature-Enhanced Context-Aware Network (FECANet) to suppress the matching noise caused by inter-class local similarity.
In addition, we propose a novel correlation reconstruction module that encodes extra correspondence relations between foreground and background and multi-scale context semantic features.
arXiv Detail & Related papers (2023-01-19T16:31:13Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Beyond the Deep Metric Learning: Enhance the Cross-Modal Matching with
Adversarial Discriminative Domain Regularization [21.904563910555368]
We propose a novel learning framework to construct a set of discriminative data domains within each image-text pairs.
Our approach can generally improve the learning efficiency and the performance of existing metrics learning frameworks.
arXiv Detail & Related papers (2020-10-23T01:48:37Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.