Dynamic Inter-Class Confusion-Aware Encoder for Audio-Visual Fusion in Human Activity Recognition
- URL: http://arxiv.org/abs/2507.09323v1
- Date: Sat, 12 Jul 2025 15:45:36 GMT
- Title: Dynamic Inter-Class Confusion-Aware Encoder for Audio-Visual Fusion in Human Activity Recognition
- Authors: Kaixuan Cong, Yifan Wang, Rongkun Xue, Yuyang Jiang, Yiming Feng, Jing Yang,
- Abstract summary: This paper proposes the Dynamic Inter-Class Confusion-Aware (DICCAE), an encoder that aligns audio-video representations at a fine-grained, category-level.<n>DICCAE addresses category confusion by dynamically adjusting the confusion loss based on inter-class confusion degrees.<n>We also introduce a novel training framework that incorporates both audio and video modalities, as well as their fusion.
- Score: 6.814894552541548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans do not understand individual events in isolation; rather, they generalize concepts within classes and compare them to others. Existing audio-video pre-training paradigms only focus on the alignment of the overall audio-video modalities, without considering the reinforcement of distinguishing easily confused classes through cognitive induction and contrast during training. This paper proposes the Dynamic Inter-Class Confusion-Aware Encoder (DICCAE), an encoder that aligns audio-video representations at a fine-grained, category-level. DICCAE addresses category confusion by dynamically adjusting the confusion loss based on inter-class confusion degrees, thereby enhancing the model's ability to distinguish between similar activities. To further extend the application of DICCAE, we also introduce a novel training framework that incorporates both audio and video modalities, as well as their fusion. To mitigate the scarcity of audio-video data in the human activity recognition task, we propose a cluster-guided audio-video self-supervised pre-training strategy for DICCAE. DICCAE achieves near state-of-the-art performance on the VGGSound dataset, with a top-1 accuracy of 65.5%. We further evaluate its feature representation quality through extensive ablation studies, validating the necessity of each module.
Related papers
- Implicit Counterfactual Learning for Audio-Visual Segmentation [50.69377287012591]
We propose the implicit counterfactual framework (ICF) to achieve unbiased cross-modal understanding.<n>Due to the lack of semantics, heterogeneous representations may lead to erroneous matches.<n>We introduce the multi-granularity implicit text (MIT) involving video-, segment- and frame-level as the bridge to establish the modality-shared space.
arXiv Detail & Related papers (2025-07-28T11:46:35Z) - AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection [57.649223695021114]
We present a novel weakly supervised framework that leverages audio-visual collaboration for robust video anomaly detection.<n>Our framework demonstrates superior performance across multiple benchmarks, with audio integration significantly boosting anomaly detection accuracy.
arXiv Detail & Related papers (2025-04-06T13:59:16Z) - LINK: Adaptive Modality Interaction for Audio-Visual Video Parsing [26.2873961811614]
We introduce a Learning Interaction method for Non-aligned Knowledge (Link)<n>Link equilibrate the contributions of distinct modalities by dynamically adjusting their input during event prediction.<n>We leverage the semantic information of pseudo-labels as a priori knowledge to mitigate noise from other modalities.
arXiv Detail & Related papers (2024-12-30T11:23:15Z) - Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
We introduce a new decoding paradigm, underlinelabel sunderlineemunderlineantic-based underlineprojection (LEAP)
LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings.
To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function.
arXiv Detail & Related papers (2024-07-11T01:57:08Z) - Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues [75.73217916395386]
We propose a Bidirectional Audio-Visual Decoder (BAVD) with integrated bidirectional bridges.
This interaction narrows the modality imbalance, facilitating more effective learning of integrated audio-visual representations.
We also present a strategy for audio-visual frame-wise synchrony as fine-grained guidance of BAVD.
arXiv Detail & Related papers (2024-02-04T03:02:35Z) - CM-PIE: Cross-modal perception for interactive-enhanced audio-visual
video parsing [23.85763377992709]
We propose a novel interactive-enhanced cross-modal perception method(CM-PIE), which can learn fine-grained features by applying a segment-based attention module.
We show that our model offers improved parsing performance on the Look, Listen, and Parse dataset.
arXiv Detail & Related papers (2023-10-11T14:15:25Z) - Prompting Segmentation with Sound Is Generalizable Audio-Visual Source
Localizer [22.846623384472377]
We introduce the encoder-prompt-decoder paradigm to decode localization from the fused audio-visual feature.
Specifically, we first propose to construct Semantic-aware Audio Prompt (SAP) to help the visual foundation model focus on sounding objects.
We develop a Correlation Adapter (ColA) to keep minimal training efforts as well as maintain adequate knowledge of the visual foundation model.
arXiv Detail & Related papers (2023-09-13T05:43:35Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Self-supervised Contrastive Learning for Audio-Visual Action Recognition [7.188231323934023]
The underlying correlation between audio and visual modalities can be utilized to learn supervised information for unlabeled videos.
We propose an end-to-end self-supervised framework named Audio-Visual Contrastive Learning (A), to learn discriminative audio-visual representations for action recognition.
arXiv Detail & Related papers (2022-04-28T10:01:36Z) - Learning Speech Representations from Raw Audio by Joint Audiovisual
Self-Supervision [63.564385139097624]
We propose a method to learn self-supervised speech representations from the raw audio waveform.
We train a raw audio encoder by combining audio-only self-supervision (by predicting informative audio attributes) with visual self-supervision (by generating talking faces from audio)
Our results demonstrate the potential of multimodal self-supervision in audiovisual speech for learning good audio representations.
arXiv Detail & Related papers (2020-07-08T14:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.