WellPINN: Accurate Well Representation for Transient Fluid Pressure Diffusion in Subsurface Reservoirs with Physics-Informed Neural Networks
- URL: http://arxiv.org/abs/2507.09330v1
- Date: Sat, 12 Jul 2025 16:14:03 GMT
- Title: WellPINN: Accurate Well Representation for Transient Fluid Pressure Diffusion in Subsurface Reservoirs with Physics-Informed Neural Networks
- Authors: Linus Walter, Qingkai Kong, Sara Hanson-Hedgecock, VĂctor Vilarrasa,
- Abstract summary: WellPINN is a modeling workflow that combines the outputs of multiple sequentially trained PINN models to accurately represent wells.<n>Our results demonstrate that sequential training of superimposing networks around the pumping well is the first workflow that focuses on accurate inference of fluid pressure from pumping rates throughout the entire injection period.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate representation of wells is essential for reliable reservoir characterization and simulation of operational scenarios in subsurface flow models. Physics-informed neural networks (PINNs) have recently emerged as a promising method for reservoir modeling, offering seamless integration of monitoring data and governing physical equations. However, existing PINN-based studies face major challenges in capturing fluid pressure near wells, particularly during the early stage after injection begins. To address this, we propose WellPINN, a modeling workflow that combines the outputs of multiple sequentially trained PINN models to accurately represent wells. This workflow iteratively approximates the radius of the equivalent well to match the actual well dimensions by decomposing the domain into stepwise shrinking subdomains with a simultaneously reducing equivalent well radius. Our results demonstrate that sequential training of superimposing networks around the pumping well is the first workflow that focuses on accurate inference of fluid pressure from pumping rates throughout the entire injection period, significantly advancing the potential of PINNs for inverse modeling and operational scenario simulations. All data and code for this paper will be made openly available at https://github.com/linuswalter/WellPINN.
Related papers
- Evaluation and Verification of Physics-Informed Neural Models of the Grad-Shafranov Equation [0.9883562565157392]
Fusion reactors rely on maintaining magnetohydrodynamic (MHD) equilibrium.<n>Recent works have demonstrated the potential of using Physics-Informed Neural Networks (PINNs) to model the Grad-Shafranov Equation (GSE)
arXiv Detail & Related papers (2025-04-29T20:17:43Z) - Using Parametric PINNs for Predicting Internal and External Turbulent Flows [6.387263468033964]
We build upon the previously proposed RANS-PINN framework, which only focused on predicting flow over a cylinder.
We investigate its accuracy in predicting relevant turbulent flow variables for both internal and external flows.
arXiv Detail & Related papers (2024-10-24T17:08:20Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes [37.69303106863453]
We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers.
Our approach combines the expressive power of a quantum model with the flexibility of a physics-informed neural network, resulting in a 21% higher accuracy compared to a purely classical neural network.
arXiv Detail & Related papers (2023-04-21T20:49:29Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
This paper presents a novel methodology for permeability prediction from micro-CT scans of geological rock samples.
The training data set for CNNs dedicated to permeability prediction consists of permeability labels that are typically generated by classical lattice Boltzmann methods (LBM)
We instead perform direct numerical simulation (DNS) by solving the stationary Stokes equation in an efficient and distributed-parallel manner.
arXiv Detail & Related papers (2021-09-04T08:43:19Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
We describe a gradient-based deep neural network (GDNN) constrained by the physics related to multiphase flow in porous media.
We demonstrate that GDNN can effectively predict the nonlinear patterns of subsurface responses.
arXiv Detail & Related papers (2021-04-30T02:14:00Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.