A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media
- URL: http://arxiv.org/abs/2105.02652v1
- Date: Fri, 30 Apr 2021 02:14:00 GMT
- Title: A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media
- Authors: Bicheng Yan, Dylan Robert Harp, Rajesh J. Pawar
- Abstract summary: We describe a gradient-based deep neural network (GDNN) constrained by the physics related to multiphase flow in porous media.
We demonstrate that GDNN can effectively predict the nonlinear patterns of subsurface responses.
- Score: 1.5791732557395552
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Simulation of multiphase flow in porous media is crucial for the effective
management of subsurface energy and environment related activities. The
numerical simulators used for modeling such processes rely on spatial and
temporal discretization of the governing partial-differential equations (PDEs)
into algebraic systems via numerical methods. These simulators usually require
dedicated software development and maintenance, and suffer low efficiency from
a runtime and memory standpoint. Therefore, developing cost-effective,
data-driven models can become a practical choice since deep learning approaches
are considered to be universal approximations. In this paper, we describe a
gradient-based deep neural network (GDNN) constrained by the physics related to
multiphase flow in porous media. We tackle the nonlinearity of flow in porous
media induced by rock heterogeneity, fluid properties and fluid-rock
interactions by decomposing the nonlinear PDEs into a dictionary of elementary
differential operators. We use a combination of operators to handle rock
spatial heterogeneity and fluid flow by advection. Since the augmented
differential operators are inherently related to the physics of fluid flow, we
treat them as first principles prior knowledge to regularize the GDNN training.
We use the example of pressure management at geologic CO2 storage sites, where
CO2 is injected in saline aquifers and brine is produced, and apply GDNN to
construct a predictive model that is trained from physics-based simulation data
and emulates the physics process. We demonstrate that GDNN can effectively
predict the nonlinear patterns of subsurface responses including the
temporal-spatial evolution of the pressure and saturation plumes. GDNN has
great potential to tackle challenging problems that are governed by highly
nonlinear physics and enables development of data-driven models with higher
fidelity.
Related papers
- Graph Neural Networks and Differential Equations: A hybrid approach for data assimilation of fluid flows [0.0]
This study presents a novel hybrid approach that combines Graph Neural Networks (GNNs) with Reynolds-Averaged Navier Stokes (RANS) equations.
The results demonstrate significant improvements in the accuracy of the reconstructed mean flow compared to purely data-driven models.
arXiv Detail & Related papers (2024-11-14T14:31:52Z) - Graph Convolutional Networks for Simulating Multi-phase Flow and Transport in Porous Media [0.0]
Data-driven surrogate modeling provides inexpensive alternatives to high-fidelity numerical simulators.
CNNs are powerful in approximating partial differential equation solutions, but it remains challenging for CNNs to handle irregular and unstructured simulation meshes.
We construct surrogate models based on Graph Convolutional Networks (GCNs) to approximate the spatial-temporal solutions of multi-phase flow and transport processes in porous media.
arXiv Detail & Related papers (2023-07-10T09:59:35Z) - Learning Generic Solutions for Multiphase Transport in Porous Media via
the Flux Functions Operator [0.0]
DeepDeepONet has emerged as a powerful tool for accelerating rendering fluxDEs.
We use Physics-In DeepONets (PI-DeepONets) to achieve this mapping without any input paired-output observations.
arXiv Detail & Related papers (2023-07-03T21:10:30Z) - Machine learning of hidden variables in multiscale fluid simulation [77.34726150561087]
Solving fluid dynamics equations often requires the use of closure relations that account for missing microphysics.
In our study, a partial differential equation simulator that is end-to-end differentiable is used to train judiciously placed neural networks.
We show that this method enables an equation based approach to reproduce non-linear, large Knudsen number plasma physics.
arXiv Detail & Related papers (2023-06-19T06:02:53Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
We present a method called Manifold Interpolating Optimal-Transport Flow (MIOFlow)
MIOFlow learns, continuous population dynamics from static snapshot samples taken at sporadic timepoints.
We evaluate our method on simulated data with bifurcations and merges, as well as scRNA-seq data from embryoid body differentiation, and acute myeloid leukemia treatment.
arXiv Detail & Related papers (2022-06-29T22:19:03Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - A Physics-Constrained Deep Learning Model for Simulating Multiphase Flow
in 3D Heterogeneous Porous Media [1.4050836886292868]
A physics-constrained deep learning model is developed for solving multiphase flow in 3D heterogeneous porous media.
The model is trained from physics-based simulation data and emulates the physics process.
The model performs prediction with a speedup of 1400 times compared to physics-based simulations.
arXiv Detail & Related papers (2021-04-30T02:15:01Z) - Neural Ordinary Differential Equations for Data-Driven Reduced Order
Modeling of Environmental Hydrodynamics [4.547988283172179]
We explore the use of Neural Ordinary Differential Equations for fluid flow simulation.
Test problems we consider include incompressible flow around a cylinder and real-world applications of shallow water hydrodynamics in riverine and estuarine systems.
Our findings indicate that Neural ODEs provide an elegant framework for stable and accurate evolution of latent-space dynamics with a promising potential of extrapolatory predictions.
arXiv Detail & Related papers (2021-04-22T19:20:47Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.