Domain Adaptation and Multi-view Attention for Learnable Landmark Tracking with Sparse Data
- URL: http://arxiv.org/abs/2507.09420v1
- Date: Sat, 12 Jul 2025 23:00:52 GMT
- Title: Domain Adaptation and Multi-view Attention for Learnable Landmark Tracking with Sparse Data
- Authors: Timothy Chase Jr, Karthik Dantu,
- Abstract summary: We present novel formulations for in-situ landmark tracking via detection and description.<n>We utilize lightweight, computationally efficient neural network architectures designed for real-time execution on current-generation spacecraft flight processors.
- Score: 4.87717454493713
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The detection and tracking of celestial surface terrain features are crucial for autonomous spaceflight applications, including Terrain Relative Navigation (TRN), Entry, Descent, and Landing (EDL), hazard analysis, and scientific data collection. Traditional photoclinometry-based pipelines often rely on extensive a priori imaging and offline processing, constrained by the computational limitations of radiation-hardened systems. While historically effective, these approaches typically increase mission costs and duration, operate at low processing rates, and have limited generalization. Recently, learning-based computer vision has gained popularity to enhance spacecraft autonomy and overcome these limitations. While promising, emerging techniques frequently impose computational demands exceeding the capabilities of typical spacecraft hardware for real-time operation and are further challenged by the scarcity of labeled training data for diverse extraterrestrial environments. In this work, we present novel formulations for in-situ landmark tracking via detection and description. We utilize lightweight, computationally efficient neural network architectures designed for real-time execution on current-generation spacecraft flight processors. For landmark detection, we propose improved domain adaptation methods that enable the identification of celestial terrain features with distinct, cheaply acquired training data. Concurrently, for landmark description, we introduce a novel attention alignment formulation that learns robust feature representations that maintain correspondence despite significant landmark viewpoint variations. Together, these contributions form a unified system for landmark tracking that demonstrates superior performance compared to existing state-of-the-art techniques.
Related papers
- Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data [14.104497777255137]
We introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations.<n>We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies.<n> Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models.
arXiv Detail & Related papers (2025-03-17T05:42:19Z) - MARs: Multi-view Attention Regularizations for Patch-based Feature Recognition of Space Terrain [4.87717454493713]
Current approaches rely on template matching with pre-gathered patch-based features.
We introduce Multi-view Attention Regularizations (MARs) to constrain the channel and spatial attention across multiple feature views.
We demonstrate improved terrain-feature recognition performance by upwards of 85%.
arXiv Detail & Related papers (2024-10-07T16:41:45Z) - Vision-Based Detection of Uncooperative Targets and Components on Small Satellites [6.999319023465766]
Space debris and inactive satellites pose a threat to the safety and integrity of operational spacecraft.
Recent advancements in computer vision models can be used to improve upon existing methods for tracking such uncooperative targets.
This paper introduces an autonomous detection model designed to identify and monitor these objects using learning and computer vision.
arXiv Detail & Related papers (2024-08-22T02:48:13Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range.
Event-based cameras address limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios.
This paper offers an exhaustive review of research and applications particularly in the autonomous driving context.
arXiv Detail & Related papers (2024-07-05T06:17:00Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - Random resistive memory-based deep extreme point learning machine for
unified visual processing [67.51600474104171]
We propose a novel hardware-software co-design, random resistive memory-based deep extreme point learning machine (DEPLM)
Our co-design system achieves huge energy efficiency improvements and training cost reduction when compared to conventional systems.
arXiv Detail & Related papers (2023-12-14T09:46:16Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
This paper presents a methodology for generating event-based vision datasets from optimal landing trajectories.
We construct sequences of photorealistic images of the lunar surface with the Planet and Asteroid Natural Scene Generation Utility.
We demonstrate that the pipeline can generate realistic event-based representations of surface features by constructing a dataset of 500 trajectories.
arXiv Detail & Related papers (2023-08-01T09:14:20Z) - You Only Crash Once: Improved Object Detection for Real-Time,
Sim-to-Real Hazardous Terrain Detection and Classification for Autonomous
Planetary Landings [7.201292864036088]
A cheap and effective way of detecting hazardous terrain is through the use of visual cameras.
Traditional techniques for visual hazardous terrain detection focus on template matching and registration to pre-built hazard maps.
We introduce You Only Crash Once (YOCO), a deep learning-based visual hazardous terrain detection and classification technique.
arXiv Detail & Related papers (2023-03-08T21:11:51Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
High-fidelity pedestrian tracking in real-life conditions has been an important tool in fundamental crowd dynamics research.
As this technology advances, it is becoming increasingly useful also in society.
To successfully employ pedestrian tracking techniques in research and technology, it is crucial to validate and benchmark them for accuracy.
We present and discuss a benchmark suite, towards an open standard in the community, for privacy-respectful pedestrian tracking techniques.
arXiv Detail & Related papers (2021-08-26T11:45:26Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.