On Information Geometry and Iterative Optimization in Model Compression: Operator Factorization
- URL: http://arxiv.org/abs/2507.09428v1
- Date: Sat, 12 Jul 2025 23:39:14 GMT
- Title: On Information Geometry and Iterative Optimization in Model Compression: Operator Factorization
- Authors: Zakhar Shumaylov, Vasileios Tsiaras, Yannis Stylianou,
- Abstract summary: We argue that many successful model compression approaches can be understood as implicitly approximating information divergences for this projection.<n>We prove convergence of iterative singular value thresholding for training neural networks subject to a soft rank constraint.
- Score: 5.952537659103525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ever-increasing parameter counts of deep learning models necessitate effective compression techniques for deployment on resource-constrained devices. This paper explores the application of information geometry, the study of density-induced metrics on parameter spaces, to analyze existing methods within the space of model compression, primarily focusing on operator factorization. Adopting this perspective highlights the core challenge: defining an optimal low-compute submanifold (or subset) and projecting onto it. We argue that many successful model compression approaches can be understood as implicitly approximating information divergences for this projection. We highlight that when compressing a pre-trained model, using information divergences is paramount for achieving improved zero-shot accuracy, yet this may no longer be the case when the model is fine-tuned. In such scenarios, trainability of bottlenecked models turns out to be far more important for achieving high compression ratios with minimal performance degradation, necessitating adoption of iterative methods. In this context, we prove convergence of iterative singular value thresholding for training neural networks subject to a soft rank constraint. To further illustrate the utility of this perspective, we showcase how simple modifications to existing methods through softer rank reduction result in improved performance under fixed compression rates.
Related papers
- Unified Scaling Laws for Compressed Representations [69.72517034565467]
We investigate whether a unified scaling framework can accurately predict model performance when training occurs over various compressed representations.<n>Our main finding is demonstrating both theoretically and empirically that there exists a simple "capacity" metric.<n>We extend our formulation to directly compare the accuracy potential of different compressed formats, and to derive better algorithms for training over sparse-quantized formats.
arXiv Detail & Related papers (2025-06-02T16:52:51Z) - Choose Your Model Size: Any Compression by a Single Gradient Descent [9.074689052563878]
We present Any Compression via Iterative Pruning (ACIP)<n>ACIP is an algorithmic approach to determine a compression-performance trade-off from a single gradient descent run.<n>We show that ACIP seamlessly complements common quantization-based compression techniques.
arXiv Detail & Related papers (2025-02-03T18:40:58Z) - Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
A learning-based approach seeks to minimize the compromise between compression rate and reconstructed image quality.
A successful technique consists in introducing a deep hyperprior that operates within a 2-level nested latent variable model.
This paper extends this concept by designing a generalized L-level nested generative model with a Markov chain structure.
arXiv Detail & Related papers (2024-06-10T11:00:26Z) - Rethinking Compression: Reduced Order Modelling of Latent Features in
Large Language Models [9.91972450276408]
This paper introduces an innovative approach for the parametric and practical compression of Large Language Models (LLMs) based on reduced order modelling.
Our method represents a significant advancement in model compression by leveraging matrix decomposition, demonstrating superior efficacy compared to the prevailing state-of-the-art structured pruning method.
arXiv Detail & Related papers (2023-12-12T07:56:57Z) - Efficient Compression of Overparameterized Deep Models through
Low-Dimensional Learning Dynamics [10.673414267895355]
We present a novel approach for compressing over parameterized models.
Our algorithm improves the training efficiency by more than 2x, without compromising generalization.
arXiv Detail & Related papers (2023-11-08T23:57:03Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
Visual Prompting has emerged as a pivotal method for transfer learning in computer vision.
Model compression detrimentally impacts the performance of visual prompting-based transfer.
However, negative effects on calibration are not present when models are compressed via quantization.
arXiv Detail & Related papers (2023-08-29T01:47:49Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
We focus on extending spatial aggregation capability and propose a dynamic kernel-based transform coding.
The proposed adaptive aggregation generates kernel offsets to capture valid information in the content-conditioned range to help transform.
Experimental results demonstrate that our method achieves superior rate-distortion performance on three benchmarks compared to the state-of-the-art learning-based methods.
arXiv Detail & Related papers (2023-08-17T01:34:51Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
We introduce Powerpropagation, a new weight- parameterisation for neural networks that leads to inherently sparse models.
Models trained in this manner exhibit similar performance, but have a distribution with markedly higher density at zero, allowing more parameters to be pruned safely.
Here, we combine Powerpropagation with a traditional weight-pruning technique as well as recent state-of-the-art sparse-to-sparse algorithms, showing superior performance on the ImageNet benchmark.
arXiv Detail & Related papers (2021-10-01T10:03:57Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.